A Transfer Learning Method Using High-Quality Pseudo Labels for Bearing Fault Diagnosis

计算机科学 稳健性(进化) 学习迁移 机器学习 人工智能 人工神经网络 数据挖掘 数据采集 核(代数) 监督学习 模式识别(心理学) 数学 组合数学 操作系统 基因 生物化学 化学
作者
Wenying Zhu,Boqiang Shi,Zhipeng Feng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:21
标识
DOI:10.1109/tim.2022.3223146
摘要

Many supervised neural network frameworks work well only when the training data and the test data are independent and identically distributed for bearing fault diagnosis. In real industrial applications, the monitoring data follow different distributions owing to the changes of working conditions and data acquisition ways. These frameworks also require numerous labeled data for training, but labeling data are laborious, even labels often do not exist in many complex engineered systems. To address these problems, we proposed a novel transfer learning method that transfers knowledge across different distributed but related domains. The proposed method exploits the capabilities of multiple kernel variant of maximum mean discrepancy (MK-MMD) in measuring the marginal probability distribution discrepancy and pseudo label in calculating conditional probability distribution discrepancy. Considering the interference of pseudo-label noise, we develop an approach to filter out pseudo labels of low quality by an adaptive threshold and a making-decision-twice strategy. The performance of the proposed method is demonstrated with two bearing datasets. The comparison with the fixed threshold shows that the improved pseudo-label learning (IPLL) can resist data imbalance and raise prediction accuracy. The proposed method is validated by predicting the bearing health states of vibration signals under various working conditions and different acquisition ways. The comparative analysis results demonstrate its advantages over other transfer learning methods in terms of prediction accuracy, robustness, and convergence speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Glitter发布了新的文献求助10
刚刚
样样子完成签到,获得积分10
1秒前
团子发布了新的文献求助10
2秒前
aaa完成签到,获得积分10
3秒前
栗子完成签到 ,获得积分10
5秒前
晚风发布了新的文献求助10
5秒前
星辰大海应助赫连涵柏采纳,获得10
6秒前
任伟超完成签到,获得积分10
8秒前
小羊晴天公主完成签到,获得积分10
10秒前
12秒前
13秒前
13秒前
等待的花卷完成签到,获得积分10
13秒前
赫连涵柏发布了新的文献求助30
14秒前
16秒前
yamo发布了新的文献求助10
17秒前
17秒前
黙宇循光完成签到 ,获得积分10
19秒前
19秒前
19秒前
lit_sheep应助观致采纳,获得10
19秒前
smy发布了新的文献求助10
21秒前
小二郎应助晚风采纳,获得10
21秒前
搞怪的语蕊完成签到,获得积分10
22秒前
科研通AI5应助zzzhu采纳,获得10
22秒前
aspiling发布了新的文献求助10
22秒前
22秒前
24秒前
嵩嵩应助搞怪的语蕊采纳,获得10
24秒前
努力发布了新的文献求助10
24秒前
充电宝应助谦让的秀采纳,获得10
24秒前
lJH完成签到,获得积分10
26秒前
shawna发布了新的文献求助30
27秒前
李健应助科研通管家采纳,获得10
28秒前
明亮幻枫应助科研通管家采纳,获得10
28秒前
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
Orange应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
29秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825749
求助须知:如何正确求助?哪些是违规求助? 3367899
关于积分的说明 10448465
捐赠科研通 3087338
什么是DOI,文献DOI怎么找? 1698645
邀请新用户注册赠送积分活动 816871
科研通“疑难数据库(出版商)”最低求助积分说明 769973