Numbering teeth in panoramic images: A novel method based on deep learning and heuristic algorithm

编号 人工智能 射线照相术 计算机科学 启发式 分割 算法 深度学习 基本事实 软件 医学 放射科 程序设计语言
作者
Ahmet Karaoğlu,Caner Özcan,Adem Pekince,Yasin Yaşa
出处
期刊:Engineering Science and Technology, an International Journal [Elsevier BV]
卷期号:37: 101316-101316 被引量:17
标识
DOI:10.1016/j.jestch.2022.101316
摘要

Dental problems are one of the most common health problems for people. To detect and analyze these problems, dentists often use panoramic radiographs that show the entire mouth and have low radiation exposure and exposure time. Analyzing these radiographs is a lengthy and tedious process. Recent studies have ensured dental radiologists can perform the analyses faster with various artificial intelligence supports. In this study, the numbering performance of Mask R-CNN and our heuristic algorithm-based method was verified on panoramic dental radiographs according to the Federation Dentaire Internationale (FDI) system. Ground-truth labelling of images required for training the deep learning algorithm was performed by two dental radiologists using the web-based labelling software DentiAssist created by the first author. The dataset was created from 2702 anonymized panoramic radiographs. The dataset is divided into 1747, 484, and 471 images, which serve as training, validation, and test sets. The dataset was validated using the k-fold cross-validation method (k = 5). A three-step heuristic algorithm was developed to improve the Mask R-CNN segmentation and numbering results. As far as we know, our study is the first in the literature to use a heuristic method in addition to traditional deep learning algorithms in detection, segmentation and numbering studies in panoramic radiography. The experimental results show that the mAp (@IOU = 0.5), precision, recall and f1 scores are 92.49%, 96.08%, 95.65% and 95.87%, respectively. The results of the learning-based algorithm were improved by more than 4%. In our research, we discovered that heuristic algorithms could improve the accuracy of deep learning-based algorithms. Our research will significantly reduce dental radiologists' workload, speed up diagnostic processes, and improve the accuracy of deep learning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意怡发布了新的文献求助10
刚刚
阿夸完成签到,获得积分10
1秒前
1秒前
匀升完成签到,获得积分10
1秒前
1秒前
整齐雁山发布了新的文献求助10
2秒前
丘比特应助yuan采纳,获得10
2秒前
2秒前
想去电影院完成签到,获得积分10
3秒前
3秒前
YCH完成签到,获得积分10
3秒前
Dromaeotroodon完成签到,获得积分10
4秒前
拜托让我的实验顺顺利利完成签到,获得积分20
4秒前
阿湫完成签到,获得积分10
4秒前
平常雪柳完成签到,获得积分10
6秒前
开心完成签到,获得积分10
6秒前
Bingtao_Lian完成签到 ,获得积分10
7秒前
dudu发布了新的文献求助10
7秒前
Vincent完成签到,获得积分10
8秒前
苻莞完成签到,获得积分10
8秒前
yangting完成签到,获得积分10
8秒前
yy完成签到,获得积分10
9秒前
Linkingrains关注了科研通微信公众号
9秒前
9秒前
科研通AI2S应助lala采纳,获得10
10秒前
goldenfleece完成签到,获得积分10
10秒前
10秒前
和谐的万宝路完成签到,获得积分10
10秒前
11秒前
重要问旋完成签到,获得积分10
12秒前
Z160完成签到,获得积分10
12秒前
如意的问枫完成签到 ,获得积分10
12秒前
深情芷完成签到,获得积分10
13秒前
望北楼主完成签到,获得积分10
13秒前
啊啊发布了新的文献求助10
14秒前
失眠无声完成签到,获得积分10
14秒前
14秒前
斯文的若颜完成签到,获得积分10
15秒前
香蕉觅云应助zyc采纳,获得10
15秒前
bellaluna发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795803
求助须知:如何正确求助?哪些是违规求助? 3340820
关于积分的说明 10302439
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677679
邀请新用户注册赠送积分活动 805534
科研通“疑难数据库(出版商)”最低求助积分说明 762642