A Computationally Efficient Red-Lesion Extraction Method for Retinal Fundus Images

眼底(子宫) 人工智能 计算机科学 分割 像素 计算机视觉 视网膜 糖尿病性视网膜病变 特征提取 视网膜 图像分割 后极 模式识别(心理学) 眼科 光学 医学 物理 内分泌学 糖尿病
作者
Maryam Monemian,Hossein Rabbani
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:15
标识
DOI:10.1109/tim.2022.3229712
摘要

Retina is an important organ of the body, the diseases of which may lead to serious damages to human vision. Fundus retinal images are the common tools for the analysis of diabetic retinopathy (DR), which is an important retinal disease. Red-lesions are from important manifestations of DR in the fundus images. In this article, a novel method is suggested for the extraction of red-lesions from fundus images. This method can detect red-lesions without the need for prior segmentation of blood vessels or lesions. The new method works based on dividing the fundus image into square patches and finding the dark ones based on the percentage of dark pixels. After finding dark patches, it is necessary to discriminate the patches that belong to the blood vessel and red-lesion. The continuing structure of blood vessels is considered a discriminating factor for the mentioned purpose. To mathematically model the continuing structure, several states are considered for the way of locating dark patches in a neighborhood. The formation of the blood vessel in vertical, horizontal, and diagonal directions is modeled in the different states. Also, the conditions of the formation of red-lesion in each direction are declared. The performance of the proposed method is evaluated on several datasets. The simplicity of computations, high speed, and acceptable accuracy are significant advantages of this method. The proposed method is capable of providing 92% and 88% for sensitivity (SE) and specificity (SP) in the Diaretdb1 dataset. Also, it provides the values of 91% and 89% for SE and SP in the Diaretdb0 dataset. Furthermore, the SE and SP values for the FIRE dataset are equal to 90% and 92%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
半山完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
waswas完成签到,获得积分10
1秒前
Bismarck完成签到,获得积分10
2秒前
云云完成签到,获得积分10
2秒前
香蕉完成签到,获得积分10
3秒前
3秒前
沐沐汐完成签到 ,获得积分10
5秒前
ccccchen完成签到,获得积分10
5秒前
Amon完成签到,获得积分10
6秒前
科研通AI6应助Roy采纳,获得10
7秒前
JC完成签到,获得积分10
7秒前
zyy完成签到,获得积分10
8秒前
8秒前
大福完成签到,获得积分10
8秒前
搞笑有毅力完成签到,获得积分10
8秒前
9秒前
tian完成签到,获得积分10
9秒前
xue完成签到 ,获得积分10
10秒前
liujianxin完成签到,获得积分20
11秒前
MQL完成签到,获得积分10
11秒前
瞿采枫完成签到 ,获得积分10
11秒前
大意的罡完成签到,获得积分10
13秒前
是菜狗子啊完成签到,获得积分10
14秒前
Dandelion完成签到 ,获得积分10
14秒前
计划逃跑完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
17秒前
dds完成签到,获得积分10
17秒前
机智毛豆完成签到,获得积分10
17秒前
gegi发布了新的文献求助10
18秒前
19秒前
iuhgnor完成签到,获得积分10
19秒前
19秒前
Fiona完成签到 ,获得积分10
20秒前
感动的老虎完成签到,获得积分10
21秒前
Criminology34应助自觉松采纳,获得10
21秒前
健忘捕完成签到 ,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427010
求助须知:如何正确求助?哪些是违规求助? 4540570
关于积分的说明 14172664
捐赠科研通 4458481
什么是DOI,文献DOI怎么找? 2445033
邀请新用户注册赠送积分活动 1436101
关于科研通互助平台的介绍 1413645