Trusted Unified Feature-Neighborhood Dynamics for Multi-View Classification

特征(语言学) 计算机科学 动力学(音乐) 人工智能 模式识别(心理学) 社会学 教育学 哲学 语言学
作者
Haojian Huang,Chuanyu Qin,Zhe Liu,Kaijing Ma,Jin Chen,Han Fang,Chao Ban,Hao Sun,Zhongjiang He
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (16): 17413-17421
标识
DOI:10.1609/aaai.v39i16.33914
摘要

Multi-view classification (MVC) faces inherent challenges due to domain gaps and inconsistencies across different views, often resulting in uncertainties during the fusion process. While Evidential Deep Learning (EDL) has been effective in addressing view uncertainty, existing methods predominantly rely on the Dempster-Shafer combination rule, which is sensitive to conflicting evidence and often neglects the critical role of neighborhood structures within multi-view data. To address these limitations, we propose a Trusted Unified Feature-NEighborhood Dynamics (TUNED) model for robust MVC. This method effectively integrates local and global feature-neighborhood (F-N) structures for robust decision-making. Specifically, we begin by extracting local F-N structures within each view. To further mitigate potential uncertainties and conflicts in multi-view fusion, we employ a selective Markov random field that adaptively manages cross-view neighborhood dependencies. Additionally, we employ a shared parameterized evidence extractor that learns global consensus conditioned on local F-N structures, thereby enhancing the global integration of multi-view features. Experiments on benchmark datasets show that our method improves accuracy and robustness over existing approaches, particularly in scenarios with high uncertainty and conflicting views.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
第一张完成签到,获得积分10
刚刚
Akim应助宇圆少女科研版采纳,获得10
刚刚
糊涂的服饰完成签到,获得积分10
刚刚
Marayoung发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
大个应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
wyj0815应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
AAAAA应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
xiaojiu完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
yuliyixue完成签到,获得积分10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
MX应助科研通管家采纳,获得20
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
3秒前
秋qiu发布了新的文献求助10
3秒前
霸气凡白发布了新的文献求助10
4秒前
5秒前
高山流水完成签到,获得积分10
5秒前
kenhahahaha发布了新的文献求助10
6秒前
俊秀的半雪完成签到,获得积分10
7秒前
7秒前
8秒前
我是老大应助过客采纳,获得10
8秒前
谦让芹菜完成签到,获得积分10
9秒前
科研通AI5应助司徒文青采纳,获得200
9秒前
李健的小迷弟应助yaya采纳,获得10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054