Machine Learning–Based Rupture Risk Prediction for Intracranial Aneurysms: A Systematic Review and Meta-Analysis

医学 接收机工作特性 机器学习 荟萃分析 人工智能 灵敏度(控制系统) 曲线下面积 临床实习 动脉瘤 风险评估 内科学 算法 放射科 物理疗法 计算机科学 计算机安全 电子工程 工程类
作者
Seyed Farzad Maroufi,María José Pachón-Londoño,Maged T. Ghoche,Brandon Nguyen,Evelyn L. Turcotte,Zhen Wang,Devi P. Patra,Vita A. Olson,Brooke S. Halpin,Abhijith Bathini,Jenna H. Meyer,Chandan Krishna,Fady T. Charbel,Jacques J. Morcos,H. Hunt Batjer,Bernard R. Bendok
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1227/neu.0000000000003531
摘要

BACKGROUND AND OBJECTIVES: Aneurysm risk prediction remains an imprecise science that places patients at risk for either over or undertreatment. Machine learning (ML) models may improve clinical practice by adding precision to risk assessment. This study aims to comprehensively assess the current landscape of ML applications in predicting the risk of aneurysm rupture and compare the performance with the widely used PHASES score. METHODS: A systematic review of PubMed, Scopus, and Web of Science was conducted. All studies using ML tools to predict the rupture risk of intracranial aneurysms were included. Meta-analysis was conducted with consideration to the ML algorithms and compared with the PHASES score. RESULTS: Thirty-six studies involving 22 462 patients were included in the final analysis. ML techniques, including 124 models using 25 algorithms, were employed. Among various ML models, while they had comparable diagnostic performance, deep learning exhibited a slightly better performance profile (sensitivity = 0.792, specificity = 0.788, and accuracy = 0.778 in external validation). Based on our analysis, ML, regardless of the algorithm, provides comparable sensitivity (0.743 vs 0.771, P = .60) and higher specificity (0.763 vs 0.507, P < .01) compared with the PHASES score. Consistently, pooling the area under the receiver operating characteristic curve (AUC) for 60 ML models and 5 PHASES score data, ML models exhibited higher AUC (0.84 vs 0.64, P < .01). Using hemodynamic parameters as input for models improved specificity ( P < .01) in the test sets without any significant changes in the sensitivity. The later improvement was not observed in the external validation sets. CONCLUSION: ML techniques have the potential to enhance the prediction of intracranial aneurysm rupture compared with traditional approaches, like the PHASES score. Incorporating hemodynamic parameters may further enhance the accuracy of ML models. Feature prospective studies are required to validate the utility of ML models for clinical integration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
olve完成签到,获得积分10
刚刚
sakuraroad发布了新的文献求助10
1秒前
1秒前
1秒前
搜集达人应助campus采纳,获得10
1秒前
1秒前
2秒前
熊猫发布了新的文献求助10
2秒前
hero完成签到,获得积分10
2秒前
昌莆发布了新的文献求助10
2秒前
读书的时候完成签到,获得积分10
2秒前
2秒前
Euphoria完成签到,获得积分10
3秒前
3秒前
牧长一完成签到 ,获得积分0
3秒前
小王小王发布了新的文献求助10
4秒前
眼睛大的断缘完成签到,获得积分10
4秒前
大模型应助南极冰采纳,获得10
4秒前
4秒前
stick发布了新的文献求助10
5秒前
bu2bujiaozsy完成签到,获得积分10
5秒前
机智的仇天完成签到,获得积分10
5秒前
5秒前
郑盼秋发布了新的文献求助10
5秒前
共享精神应助乐观的忘幽采纳,获得10
5秒前
于儒琛发布了新的文献求助10
6秒前
李欣宇发布了新的文献求助10
6秒前
哈哈哈哈呀完成签到,获得积分20
6秒前
CatherineRR发布了新的文献求助10
7秒前
leshi完成签到,获得积分10
7秒前
7秒前
FashionBoy应助淡淡向卉采纳,获得10
8秒前
ann发布了新的文献求助10
9秒前
默默安荷完成签到,获得积分10
9秒前
9秒前
田20202021完成签到,获得积分10
9秒前
9秒前
天天快乐应助hemoon采纳,获得10
9秒前
在水一方应助sresr采纳,获得10
10秒前
林宗正发布了新的文献求助50
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4931750
求助须知:如何正确求助?哪些是违规求助? 4200265
关于积分的说明 13048944
捐赠科研通 3974106
什么是DOI,文献DOI怎么找? 2177611
邀请新用户注册赠送积分活动 1194207
关于科研通互助平台的介绍 1105343