亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

From Spatial Domain to Temporal Domain: Unleashing the Capability of CFAR for mmWave Point Cloud Generation

点云 计算机科学 雷达 噪音(视频) 恒虚警率 实时计算 云计算 遥感 人工智能 电信 地理 图像(数学) 操作系统
作者
Hongliu Yang,Duo Zhang,Xusheng Zhang,Jie Xiong,Zizhou Fan,Weizhi Ning,Weiyan Chen,Fusang Zhang,Zijun Han,Daqing Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:9 (2): 1-29 被引量:1
标识
DOI:10.1145/3729465
摘要

Point clouds are a crucial data type for mmWave radar and are widely used in sensing applications such as human tracking and activity recognition. However, for indoor human sensing, the point clouds obtained by mmWave radar are often sparse. Previous studies attribute the sparsity to the limited sensing capabilities of mmWave radar, underestimating the impact of CFAR---a key algorithmic component of mmWave systems---on point cloud quality. Through empirical studies, we find that the spatial-based CFAR widely used in existing works suffers from a severe energy masking issue. This is because these algorithms work well when the target is far away enough to be approximated as a point. In short-range indoor sensing, the human body can not be considered as a point but an extended target, causing the spatial-based CFAR to calculate the noise power wrongly and accordingly a miss-generation of the point cloud. To fundamentally solve the problem, this paper proposes a temporal-based CFAR named ETCM-CFAR. We address multiple issues such as lacking initial noise power and the absence of a closed-form threshold solution to make the proposed algorithm work. Based on ETCM-CFAR, this paper proposes a point cloud generation system named mmPC. mmPC is implemented on three different types of commercial-off-the-shelf mmWave radars and extensive experiments demonstrate that mmPC significantly improves point cloud quality, increasing the number of cloud points by 148.6% compared to the state-of-the-art systems. Two representative sensing applications, i.e., fitness activity recognition and human-pet classification are further employed to demonstrate the effectiveness of mmPC on sensing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yishang发布了新的文献求助10
1秒前
2秒前
7秒前
8秒前
wavelet发布了新的文献求助10
8秒前
13秒前
14秒前
15秒前
Qinghen发布了新的文献求助10
18秒前
19秒前
winwin发布了新的文献求助10
19秒前
Qinghen完成签到,获得积分10
26秒前
DOO关闭了DOO文献求助
30秒前
赘婿应助wavelet采纳,获得10
30秒前
胡林完成签到,获得积分10
32秒前
33秒前
胡林发布了新的文献求助10
36秒前
遇上就这样吧应助ceeray23采纳,获得200
37秒前
上官若男应助冬虫夏草采纳,获得10
39秒前
Iris发布了新的文献求助10
47秒前
48秒前
super完成签到,获得积分10
50秒前
50秒前
ceeray23发布了新的文献求助300
50秒前
53秒前
55秒前
冬虫夏草发布了新的文献求助10
55秒前
lld发布了新的文献求助10
57秒前
57秒前
Marshall发布了新的文献求助10
57秒前
breeze完成签到,获得积分10
57秒前
1分钟前
1分钟前
共享精神应助lld采纳,获得10
1分钟前
1分钟前
1分钟前
二丙发布了新的文献求助10
1分钟前
556发布了新的文献求助10
1分钟前
淡淡樱桃发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664066
求助须知:如何正确求助?哪些是违规求助? 4857165
关于积分的说明 15107066
捐赠科研通 4822504
什么是DOI,文献DOI怎么找? 2581501
邀请新用户注册赠送积分活动 1535723
关于科研通互助平台的介绍 1493949