LSTA-CNN: A Lightweight Spatio-temporal Attention-based Convolutional Neural Network for ASD Diagnosis Using EEG

卷积神经网络 计算机科学 脑电图 人工智能 模式识别(心理学) 语音识别 心理学 神经科学
作者
Jing Li,Xiujian Jia,Xinghan Chen,Gongfa Li,Gaoxiang Ouyang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2025.3580593
摘要

Electroencephalography (EEG) is an effective assessment tool to identify autism spectrum disorders with low cost, and deep learning has been applied in EEG analysis for extracting meaningful features in recent years. However, as a kind of neural electrophysiological signal, EEG contains different types of temporal and spatial information. Therefore, we propose a lightweight spatio-temporal attention-based convolutional neural network (LSTA-CNN) for ASD diagnosis based on EEG recordings. It utilizes multi-scale temporal and spatial convolution layers to simultaneously learn diverse representations from the time and spatial domain. Meanwhile, we introduce a new spatio-temporal attention mechanism, which can jointly integrate features from the temporal domain and spatial domain, enabling our model to extract EEG features effectively. We performed extensive experiments on our self-collected EEG recordings of 41 autistic children and 32 normal control children. Compared with some representative deep learning models, e.g., Shallow ConvNet, EEGNet, etc., our proposed LSTA-CNN achieves the best classification performance on our self-collected EEG dataset. In addition, our model has significantly fewer numbers of parameters and requires less inference time, which indicates it is lightweight and has great potential in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JIANYOUFU完成签到,获得积分10
1秒前
禾斗完成签到,获得积分10
1秒前
英姑应助大宝剑2号采纳,获得10
1秒前
gf发布了新的文献求助10
3秒前
追梦小帅完成签到,获得积分10
3秒前
bean发布了新的文献求助10
3秒前
u雪发布了新的文献求助10
4秒前
漂亮的秋寒完成签到,获得积分20
4秒前
史萌发布了新的文献求助50
4秒前
月月鸟发布了新的文献求助10
4秒前
5秒前
小马甲应助DE采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
GLFCX完成签到,获得积分10
8秒前
Jani完成签到,获得积分10
8秒前
隐形的柜子完成签到,获得积分10
9秒前
9秒前
dandelion完成签到,获得积分10
10秒前
Dr大壮发布了新的文献求助30
10秒前
喜悦兔子发布了新的文献求助10
10秒前
10秒前
JamesPei应助才不是笨蛋采纳,获得10
11秒前
11秒前
果实发布了新的文献求助10
11秒前
gf完成签到,获得积分10
11秒前
LGH发布了新的文献求助10
11秒前
Jason完成签到,获得积分10
12秒前
12秒前
13秒前
陈坤完成签到,获得积分10
13秒前
传奇3应助Fred_Whu采纳,获得10
14秒前
Owen应助赵学雨采纳,获得10
14秒前
失眠的硬币完成签到,获得积分10
14秒前
在水一方应助卷卷小鱼采纳,获得10
14秒前
14秒前
xxt完成签到,获得积分10
15秒前
wxy发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098150
求助须知:如何正确求助?哪些是违规求助? 4310384
关于积分的说明 13430331
捐赠科研通 4137812
什么是DOI,文献DOI怎么找? 2266899
邀请新用户注册赠送积分活动 1270029
关于科研通互助平台的介绍 1206256