Enhancing Continual Semantic Segmentation via Uncertainty and Class Balance Re-weighting

加权 分割 人工智能 计算机科学 图像分割 班级(哲学) 平衡(能力) 模式识别(心理学) 计算机视觉 自然语言处理 医学 物理医学与康复 放射科
作者
Zichen Liang,Yusong Hu,Fei Yang,Xialei Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3576477
摘要

Continual Semantic Segmentation (CSS) primarily aims to continually learn new semantic segmentation categories while avoiding catastrophic forgetting. In semantic segmentation tasks, images can comprise both familiar old categories and novel unseen categories and they are treated as background in the incremental stage. Therefore, it is necessary to utilize the old model to generate pseudo-labels. However, the quality of these pseudo-labels significantly influences the model's forgetting of the old categories. Erroneous pseudo-labels can introduce harmful gradients, thus exacerbating model forgetting. In addition, the issue of class imbalance poses a significant challenge within the realm of CSS. Although traditional methods frequently diminish the emphasis placed on new classes to address this imbalance, we discover that the imbalance extends beyond the distinction between old and new classes. In this paper, we specifically address two previously overlooked problems in CSS: the impact of erroneous pseudo-labels on model forgetting and the confusion induced by class imbalance. We propose an Uncertainty and Class Balance Re-weighting approach (UCB) that assigns higher weights to pixels with pseudo-labels exhibiting lower uncertainty and to categories with smaller proportions during the training process. Our proposed approach enhances the impact of essential pixels during the continual learning process, thereby reducing model forgetting and dynamically balancing category weights based on the dataset. Our method is simple yet effective and can be applied to any method that uses pseudo-labels. Extensive experiments on the Pascal-VOC and ADE20K datasets demonstrate the efficacy of our approach in improving model performance across three state-of-the-art methods. The code will be available at https://github.com/JACK-Chen-2019/UCB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若木完成签到,获得积分10
1秒前
1秒前
1秒前
浮游应助曈梦采纳,获得10
1秒前
wsh发布了新的文献求助10
1秒前
顾矜应助早日毕业采纳,获得10
1秒前
liaomr发布了新的文献求助10
2秒前
青灿笑完成签到,获得积分10
2秒前
bodhi发布了新的文献求助30
2秒前
2秒前
好好好发布了新的文献求助10
2秒前
2秒前
3秒前
夏侯初发布了新的文献求助10
3秒前
3秒前
风趣的小鸽子完成签到,获得积分10
4秒前
4秒前
杨知意完成签到,获得积分10
4秒前
宇宙边缘打怪兽完成签到,获得积分10
5秒前
认真雅阳发布了新的文献求助10
5秒前
ss发布了新的文献求助10
5秒前
yun789发布了新的文献求助10
5秒前
mll发布了新的文献求助10
5秒前
6秒前
小虎完成签到,获得积分10
6秒前
大意的柚子完成签到,获得积分10
6秒前
6秒前
科目三应助从容的采梦采纳,获得10
7秒前
13664424767发布了新的文献求助10
7秒前
蓝胖胖完成签到,获得积分10
7秒前
嗯呐完成签到,获得积分10
7秒前
8秒前
慕青应助lzy303886采纳,获得10
8秒前
8秒前
Hello应助乔木自燃采纳,获得10
9秒前
Mm林完成签到,获得积分10
9秒前
所所应助凸迩丝儿采纳,获得10
9秒前
明理平文发布了新的文献求助10
9秒前
iffy发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068354
求助须知:如何正确求助?哪些是违规求助? 4289934
关于积分的说明 13365813
捐赠科研通 4109719
什么是DOI,文献DOI怎么找? 2250474
邀请新用户注册赠送积分活动 1255837
关于科研通互助平台的介绍 1188347