A Deep Retrieval-Enhanced Meta-Learning Framework for Enzyme Optimum pH Prediction

计算机科学 人工智能 机器学习 支持向量机 相似性(几何) 功能(生物学) 深度学习 生物 进化生物学 图像(数学)
作者
Liang Zhang,Kuan Luo,Ziyi Zhou,Yuanxi Yu,Fan Jiang,Banghao Wu,Mingchen Li,Liang Hong
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c02291
摘要

The potential of hydrogen (pH) influences the function of the enzyme. Measuring or predicting the optimal pH (pHopt) at which enzymes exhibit maximal catalytic activity is crucial for enzyme design and application. The rapid development of enzyme mining and de novo design has produced a large number of new enzymes, making it impractical to measure their pHopt in the wet laboratory. Consequently, in-silico computational approaches such as machine learning and deep learning models, which offer pH prediction at minimal cost, have attracted considerable interest. This work presents Venus-DREAM, an enzyme pHopt prediction model based on the kNN algorithm and few-shot learning, which achieves state-of-the-art accuracy in pHopt prediction. Venus-DREAM regards the pHopt prediction of an enzyme as a few-shot learning task: learning from the k-closest labeled enzymes to predict the pHopt of the target enzyme. The value of k is determined by the optimal k-value of the kNN regression algorithm. And the distance between two enzymes is defined as the cosine similarity of their mean-pooled embeddings obtained from protein language models (PLMs). The few-shot learner is based on the Reptile algorithm, which first adapts to the k-nearest labeled enzymes to create a specialized model for the target enzyme and then predicts its pHopt. This efficient method enables high-throughput virtual exploration of protein space, facilitating the identification of sequences with the desired pHopt ranges in a high-throughput manner. Moreover, our method can be easily adapted in other protein function prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昭奚发布了新的文献求助10
刚刚
猪猪侠发布了新的文献求助100
刚刚
1秒前
2秒前
3秒前
开心岩发布了新的文献求助10
4秒前
song发布了新的文献求助10
4秒前
苗苗发布了新的文献求助10
4秒前
4秒前
LL发布了新的文献求助10
5秒前
情怀应助巫马采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得50
6秒前
Ava应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
Mo应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
丘比特应助科研通管家采纳,获得20
6秒前
Mo应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
一一应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
牧紊发布了新的文献求助10
7秒前
mzc发布了新的文献求助10
7秒前
甜美冰旋发布了新的文献求助10
8秒前
8秒前
完美世界应助滴滴滴采纳,获得10
9秒前
zz完成签到,获得积分20
9秒前
9秒前
赵飞燕发布了新的文献求助10
12秒前
12秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4292424
求助须知:如何正确求助?哪些是违规求助? 3819112
关于积分的说明 11959187
捐赠科研通 3462552
什么是DOI,文献DOI怎么找? 1899240
邀请新用户注册赠送积分活动 947610
科研通“疑难数据库(出版商)”最低求助积分说明 850336