Prediction of Patients With High-Risk Osteosarcoma on the Basis of XGBoost Algorithm Using Transcriptome and Methylation Data From SGH-OS Cohort

队列 医学 肿瘤科 分类器(UML) 接收机工作特性 骨肉瘤 转录组 内科学 生物信息学 人工智能 机器学习 计算机科学 病理 基因 生物 基因表达 遗传学
作者
Weisong Zhao,Huanliang Meng,Zhenxiang Dai,Lulu Zhang,Zhiwei Cheng,Xue Song,Wenyuan Xu,Zhuoying Wang,Kai Tian,Yafei Jiang,Wei Sun,Zhengdong Cai,Gangyang Wang,Yingqi Hua
出处
期刊:JCO precision oncology [Lippincott Williams & Wilkins]
卷期号: (9)
标识
DOI:10.1200/po-24-00732
摘要

PURPOSE Osteosarcoma (OS) is the most prevalent primary malignant bone sarcoma, characterized by its high rates of metastasis and mortality. In our previous multiomics analysis of the Shanghai General Hospital OS (SGH-OS) cohort, we identified four distinct OS subtypes, each with unique molecular characteristics and clinical outcomes. Of particular importance was the identification of the MYC-driven subtype, which exhibited the poorest prognosis and was referred to as high-risk OS. A diagnostic tool is needed for clinicians to identify high-risk OS in advance. The purpose of this study is to develop a classifier capable of accurately predicting the high-risk OS subtype using transcriptome and methylation data. METHODS In this study, using eXtreme Gradient Boosting (XGBoost) with Bayesian optimization, we developed a classification model by integrating transcriptome and methylation data from our internal SGH-OS cohort. We further validated the model's predictive performance with the external TARGET-OS cohort. RESULTS Using the XGBoost algorithm, we developed a classifier incorporating nine genes (ARHGAP9, CADM1, CPE, DUSP3, FGFR1, GALNT3, IGF2BP3, KIF26A, ZFP3). In our internal cohort, the classifier exhibited excellent predictive performance, with an area under the receiver operating characteristics curve (AUC) of 0.999 and an overall accuracy of 0.989. Furthermore, the classifier successfully stratified two groups with distinct survival outcomes in the external TARGET-OS cohort. Notably, our analysis revealed a positive correlation between IGF2BP3 and MYC signaling pathways, highlighting IGF2BP3 as a potential therapeutic target in high-risk OS. CONCLUSION Our classifier demonstrated excellent predictive performance in identifying patients with high-risk OS, offering the potential to enhance treatment decision making and optimize patient management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温言叮叮铛完成签到,获得积分10
刚刚
彬彬有李发布了新的文献求助10
1秒前
槿柠发布了新的文献求助10
1秒前
赘婿应助幼儿园老大采纳,获得10
1秒前
1秒前
3秒前
3秒前
万能图书馆应助阳光溪流采纳,获得10
3秒前
4秒前
5秒前
5秒前
Yuxzzr发布了新的文献求助10
5秒前
小张爱学习完成签到,获得积分10
5秒前
汤汤杨杨完成签到,获得积分10
5秒前
诺诺完成签到,获得积分10
5秒前
称心寒松发布了新的文献求助30
5秒前
6秒前
LHL发布了新的文献求助10
7秒前
靳志强发布了新的文献求助10
9秒前
ffffwj2024完成签到,获得积分10
9秒前
pencil123完成签到,获得积分10
10秒前
科研通AI5应助xiaojian_291采纳,获得10
10秒前
Eric发布了新的文献求助10
10秒前
李爱国应助Bambookiller采纳,获得10
12秒前
今后应助YUE采纳,获得10
12秒前
随风摇摆的水桶腰完成签到,获得积分10
12秒前
科研通AI5应助h w wang采纳,获得10
13秒前
april666666发布了新的文献求助10
13秒前
帅气的杰瑞完成签到,获得积分10
14秒前
伶俐的无颜完成签到 ,获得积分10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
Thien应助科研通管家采纳,获得10
14秒前
Thien应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
Freya应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
Thien应助科研通管家采纳,获得10
14秒前
北风应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789328
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269432
捐赠科研通 3050794
什么是DOI,文献DOI怎么找? 1674162
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693