Integrating Plasma Cell-Free DNA Fragment End Motif and Size with Genomic Features Enables Lung Cancer Detection

肺癌 概化理论 计算生物学 液体活检 分类器(UML) 医学 肿瘤科 生物信息学 生物 癌症 人工智能 内科学 计算机科学 数学 统计
作者
Tae-Rim Lee,Jin Mo Ahn,Junnam Lee,Dasom Kim,Juntae Park,Byeong‐Ho Jeong,Dongryul Oh,Sang Man Kim,Gyou-Chul Jung,Beom Hee Choi,Min‐Jung Kwon,Mengchi Wang,Michael Salmans,Andrew D. Carson,Bryan Leatham,Kristin Fathe,Byung In Lee,Byoungsok Jung,Chang‐Seok Ki,Young Sik Park
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:: OF1-OF12
标识
DOI:10.1158/0008-5472.can-24-1517
摘要

Early detection of lung cancer is important for improving patient survival rates. Liquid biopsy using whole-genome sequencing of cell-free DNA (cfDNA) offers a promising avenue for lung cancer screening, providing a potential alternative or complementary approach to current screening modalities. Here, we aimed to develop and validate an approach by integrating fragment and genomic features of cfDNA to enhance lung cancer detection accuracy across diverse populations. Deep learning-based classifiers were trained using comprehensive cfDNA fragmentomic features from participants in multi-institutional studies, including a Korean discovery dataset (218 patients with lung cancer and 2,559 controls), a Korean validation dataset (111 patients with lung cancer and 1,136 controls), and an independent Caucasian validation cohort (50 patients with lung cancer and 50 controls). In the discovery dataset, classifiers using fragment end motif by size, a feature that captures both fragment end motif and size profiles, outperformed standalone fragment end motif and fragment size classifiers, achieving an area under the curve (AUC) of 0.917. The ensemble classifier integrating fragment end motif by size and genomic coverage achieved an improved performance, with an AUC of 0.937. This performance extended to the Korean validation dataset and demonstrated ethnic generalizability in the Caucasian validation cohort. Overall, the development of a deep learning-based classifier integrating cfDNA fragmentomic and genomic features in this study highlights the potential for accurate lung cancer detection across diverse populations. Significance: Evaluating fragment-based features and genomic coverage in cell-free DNA offers an accurate lung cancer screening method, promising improvements in early cancer detection and addressing challenges associated with current screening methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心神依然发布了新的文献求助10
刚刚
李宝刚完成签到,获得积分10
2秒前
狗咚嘻完成签到,获得积分10
4秒前
a9902002完成签到 ,获得积分10
4秒前
笑点低的飞扬完成签到 ,获得积分10
6秒前
10秒前
10秒前
慢慢的地理人完成签到,获得积分10
11秒前
11秒前
Logan完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
ding应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
33ovo完成签到 ,获得积分10
13秒前
王木木发布了新的文献求助10
15秒前
小钉子发布了新的文献求助10
15秒前
16秒前
李爱国应助顺心初蓝采纳,获得10
17秒前
forest完成签到,获得积分10
18秒前
gkk发布了新的文献求助20
19秒前
Cherish完成签到,获得积分10
21秒前
22秒前
默默咖啡豆完成签到,获得积分10
24秒前
25秒前
25秒前
张张发布了新的文献求助10
29秒前
29秒前
zho发布了新的文献求助10
31秒前
123发布了新的文献求助10
31秒前
我是老大应助李丽玲采纳,获得20
31秒前
福宝发布了新的文献求助10
31秒前
32秒前
传奇3应助wumumu采纳,获得10
36秒前
456完成签到,获得积分10
37秒前
39秒前
cj关注了科研通微信公众号
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757