Robust Radiomic Signatures of Intervertebral Disc Degeneration From MRI

医学 磁共振成像 组内相关 椎间盘 腰痛 卡帕 四分位间距 无线电技术 腰椎 腰椎 放射科 核医学 病理 外科 数学 心理测量学 替代医学 临床心理学 几何学
作者
Terence McSweeney,Aleksei Tiulpin,Narasimharao Kowlagi,Juhani Määttä,Jaro Karppinen,Simo Saarakkala
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:50 (24): 1737-1746 被引量:1
标识
DOI:10.1097/brs.0000000000005435
摘要

Study Design. A retrospective analysis. Objective. The aim of this study was to identify a robust radiomic signature from deep learning segmentations for intervertebral disc (IVD) degeneration classification. Summary of Data. Low back pain (LBP) is the most common musculoskeletal symptom worldwide and IVD degeneration is an important contributing factor. To improve the quantitative phenotyping of IVD degeneration from T2-weighted magnetic resonance imaging (MRI) and better understand its relationship with LBP, multiple shape and intensity features have been investigated. IVD radiomics has been less studied but could reveal subvisual imaging characteristics of IVD degeneration. Materials and Methods. We used data from Northern Finland Birth Cohort 1966 members who underwent lumbar spine T2-weighted MRI scans at age 45 to 47 (n=1397). We used a deep learning model to segment the lumbar spine IVDs and extracted 737 radiomic features, as well as calculating IVD height index and peak signal intensity difference. Intraclass correlation coefficients across image and mask perturbations were calculated to identify robust features. Sparse partial least squares discriminant analysis was used to train a Pfirrmann grade classification model. Results. The radiomics model had balanced accuracy of 76.7% (73.1%–80.3%) and Cohen’s kappa of 0.70 (0.67–0.74), compared with 66.0% (62.0%–69.9%) and 0.55 (0.51–0.59) for an IVD height index and peak signal intensity model. 2D sphericity and interquartile range emerged as radiomics-based features that were robust and highly correlated to Pfirrmann grade (Spearman’s correlation coefficients of −0.72 and −0.77, respectively). Conclusion. Based on our findings, these radiomic signatures could serve as alternatives to the conventional indices, representing a significant advance in the automated quantitative phenotyping of IVD degeneration from standard-of-care MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
万能图书馆应助666采纳,获得10
刚刚
大个应助狂野的山雁采纳,获得10
刚刚
Tao完成签到,获得积分10
刚刚
zz发布了新的文献求助10
2秒前
JacobWang发布了新的文献求助10
3秒前
浮游应助gaoyalin采纳,获得10
3秒前
何文鑫完成签到 ,获得积分10
3秒前
wanci应助拉长的凌旋采纳,获得10
4秒前
4秒前
5秒前
秋月明发布了新的文献求助10
5秒前
黄桃罐头完成签到 ,获得积分10
6秒前
8秒前
逆向追逐完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
怕孤单的听寒完成签到,获得积分10
10秒前
包容的跳跳糖完成签到,获得积分10
10秒前
12秒前
666发布了新的文献求助10
13秒前
13秒前
RC_Wang发布了新的文献求助10
13秒前
orixero应助舒服的高山采纳,获得10
14秒前
14秒前
乐乐应助可靠巧荷采纳,获得10
14秒前
随便点发布了新的文献求助10
14秒前
SciGPT应助杨昕采纳,获得10
15秒前
SciGPT应助JacobWang采纳,获得10
16秒前
小陈爱涂六神完成签到 ,获得积分10
17秒前
欢呼南晴完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
肽聚糖发布了新的文献求助10
19秒前
Ava应助22采纳,获得10
20秒前
思源应助RC_Wang采纳,获得10
21秒前
怡然的晓丝完成签到 ,获得积分10
21秒前
flow完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496844
求助须知:如何正确求助?哪些是违规求助? 4594452
关于积分的说明 14444825
捐赠科研通 4526995
什么是DOI,文献DOI怎么找? 2480606
邀请新用户注册赠送积分活动 1465047
关于科研通互助平台的介绍 1437782