Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study

医学 乳腺癌 新辅助治疗 肿瘤科 乳房磁振造影 三阴性乳腺癌 阶段(地层学) 人工智能 内科学 机器学习 癌症 乳腺摄影术 计算机科学 生物 古生物学
作者
Yühong Huang,Teng Zhu,Xiaoling Zhang,Wei Li,XingXing Zheng,Minyi Cheng,Fei Ji,LiuLu Zhang,Ciqiu Yang,Zhi‐Yong Wu,GuoLin Ye,Ying Lin,Kun Wang
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:58: 101899-101899 被引量:82
标识
DOI:10.1016/j.eclinm.2023.101899
摘要

Accurate identification of pCR to neoadjuvant chemotherapy (NAC) is essential for determining appropriate surgery strategy and guiding resection extent in breast cancer. However, a non-invasive tool to predict pCR accurately is lacking. Our study aims to develop ensemble learning models using longitudinal multiparametric MRI to predict pCR in breast cancer.From July 2015 to December 2021, we collected pre-NAC and post-NAC multiparametric MRI sequences per patient. We then extracted 14,676 radiomics and 4096 deep learning features and calculated additional delta-value features. In the primary cohort (n = 409), the inter-class correlation coefficient test, U-test, Boruta and the least absolute shrinkage and selection operator regression were used to select the most significant features for each subtype of breast cancer. Five machine learning classifiers were then developed to predict pCR accurately for each subtype. The ensemble learning strategy was used to integrate the single-modality models. The diagnostic performances of models were evaluated in the three external cohorts (n = 343, 170 and 340, respectively).A total of 1262 patients with breast cancer from four centers were enrolled in this study, and pCR rates were 10.6% (52/491), 54.3% (323/595) and 37.5% (66/176) in HR+/HER2-, HER2+ and TNBC subtype, respectively. Finally, 20, 15 and 13 features were selected to construct the machine learning models in HR+/HER2-, HER2+ and TNBC subtypes, respectively. The multi-Layer Perception (MLP) yields the best diagnostic performances in all subtypes. For the three subtypes, the stacking model integrating pre-, post- and delta-models yielded the highest AUCs of 0.959, 0.974 and 0.958 in the primary cohort, and AUCs of 0.882-0.908, 0.896-0.929 and 0.837-0.901 in the external validation cohorts, respectively. The stacking model had accuracies of 85.0%-88.9%, sensitivities of 80.0%-86.3%, and specificities of 87.4%-91.5% in the external validation cohorts.Our study established a novel tool to predict the responses of breast cancer to NAC and achieve excellent performance. The models could help to determine post-NAC surgery strategy for breast cancer.This study is supported by grants from the National Natural Science Foundation of China (82171898, 82103093), the Deng Feng project of high-level hospital construction (DFJHBF202109), the Guangdong Basic and Applied Basic Research Foundation (grant number, 2020A1515010346, 2022A1515012277), the Science and Technology Planning Project of Guangzhou City (202002030236), the Beijing Medical Award Foundation (YXJL-2020-0941-0758), and the Beijing Science and Technology Innovation Medical Development Foundation (KC2022-ZZ-0091-5). Funding sources were not involved in the study design, data collection, analysis and interpretation, writing of the report, or decision to submit the article for publication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
悦耳的城发布了新的文献求助10
2秒前
科研通AI5应助linza采纳,获得10
2秒前
啊啊啊橙子完成签到,获得积分10
2秒前
3秒前
李健的粉丝团团长应助zf采纳,获得10
5秒前
无花果应助小新采纳,获得10
5秒前
算命的完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
毛竹发布了新的文献求助100
7秒前
8秒前
可爱的函函应助专注大米采纳,获得10
9秒前
Duang发布了新的文献求助10
9秒前
瀼瀼发布了新的文献求助10
11秒前
12秒前
14秒前
呆萌的太阳完成签到 ,获得积分10
14秒前
以戈完成签到,获得积分10
14秒前
1234完成签到,获得积分10
15秒前
caixia完成签到 ,获得积分10
16秒前
17秒前
linza完成签到,获得积分10
17秒前
2Cd完成签到,获得积分10
17秒前
17秒前
yw完成签到,获得积分20
18秒前
张建发布了新的文献求助20
19秒前
HPt发布了新的文献求助10
20秒前
岛err完成签到,获得积分10
20秒前
sjh完成签到,获得积分10
22秒前
23秒前
23秒前
怕孤单的浩阑完成签到,获得积分20
24秒前
张张完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
Yvette2024发布了新的文献求助10
28秒前
qmhx发布了新的文献求助10
29秒前
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4138579
求助须知:如何正确求助?哪些是违规求助? 3675374
关于积分的说明 11618190
捐赠科研通 3369657
什么是DOI,文献DOI怎么找? 1851016
邀请新用户注册赠送积分活动 914247
科研通“疑难数据库(出版商)”最低求助积分说明 829126