R₂FD₂: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-Invariant Feature Descriptor

不变(物理) 人工智能 模式识别(心理学) 旋转(数学) 特征(语言学) 特征提取 探测器 计算机科学 方向(向量空间) 频道(广播) 计算机视觉 数学 算法 几何学 电信 计算机网络 语言学 哲学 数学物理
作者
Bai Zhu,Chao Yang,Jinkun Dai,Jianwei Fan,Yao Qin,Yuanxin Ye
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:78
标识
DOI:10.1109/tgrs.2023.3264610
摘要

Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differences, which consists of a repeatable feature detector and a rotation-invariant feature descriptor. In the first stage, a repeatable feature detector called the Multi-channel Auto-correlation of the Log-Gabor (MALG) is presented for feature detection, which combines the multi-channel auto-correlation strategy with the Log-Gabor wavelets to detect interest points (IPs) with high repeatability and uniform distribution. In the second stage, a rotation-invariant feature descriptor is constructed, named the Rotation-invariant Maximum index map of the Log-Gabor (RMLG), which includes fast assignment of dominant orientation and construction of feature representation. In the process of fast assignment of dominant orientation, a Rotation-invariant Maximum Index Map (RMIM) is built to address rotation deformations. Then, the proposed RMLG incorporates the rotation-invariant RMIM with the spatial configuration of DAISY to improve RMLG's resistance to radiation and rotation variances. Finally, we conduct experiments to validate the matching performance of our R 2 FD 2 utilizing different types of multimodal image datasets. Experimental results show that the proposed R 2 FD 2 outperforms five state-of-the-art feature matching methods. Moreover, our R 2 FD 2 achieves the accuracy of matching within two pixels and has a great advantage in matching efficiency over contrastive methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
讨厌麻烦发布了新的文献求助10
刚刚
刚刚
小马甲应助ZD采纳,获得10
刚刚
able发布了新的文献求助10
1秒前
zc发布了新的文献求助10
2秒前
魏什么发布了新的文献求助10
2秒前
翔翔超人完成签到,获得积分10
3秒前
洋洋爱吃枣完成签到 ,获得积分10
3秒前
GAO发布了新的文献求助10
4秒前
4秒前
5秒前
AnnChen完成签到,获得积分10
6秒前
6秒前
yukiing完成签到,获得积分10
6秒前
魏什么完成签到,获得积分10
7秒前
大模型应助内向的听云采纳,获得10
7秒前
早早发布了新的文献求助10
8秒前
9秒前
9秒前
GRG完成签到 ,获得积分10
9秒前
王向阳发布了新的文献求助10
9秒前
自由擎汉发布了新的文献求助10
9秒前
9秒前
lxy完成签到,获得积分10
11秒前
12秒前
活泼宛海发布了新的文献求助30
13秒前
陶治完成签到,获得积分10
13秒前
大力诗霜发布了新的文献求助10
14秒前
lxy发布了新的文献求助10
14秒前
深情安青应助yjsshr采纳,获得10
15秒前
15秒前
15秒前
舒适雪曼发布了新的文献求助10
16秒前
KK应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得20
16秒前
再吃一颗苹果完成签到,获得积分10
16秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820683
求助须知:如何正确求助?哪些是违规求助? 3363576
关于积分的说明 10423882
捐赠科研通 3081997
什么是DOI,文献DOI怎么找? 1695408
邀请新用户注册赠送积分活动 815083
科研通“疑难数据库(出版商)”最低求助积分说明 768856