Demons Hidden in the Light: Unrestricted Adversarial Illumination Attacks

对抗制 计算机科学 人工智能 脆弱性(计算) 深层神经网络 计算机安全 深度学习 预处理器 机器学习 正规化(语言学)
作者
Kaibo Wang,Yanjiao Chen,Wenyuan Xu
标识
DOI:10.1007/978-3-031-28990-3_9
摘要

As deep learning-based computer vision is widely used in IoT devices, it is especially critical to ensure its security. Among the attacks against deep neural networks, adversarial attacks are a stealthy means of attack, which can mislead model decisions during the testing phase. Therefore, the exploration of adversarial attacks can help to understand the vulnerability of models in advance and make targeted defense. Existing unrestricted adversarial attacks beyond the $$\ell _p$$ norm often require additional models to be both adversarial and imperceptible, which leads to a high computational cost and task-specific design. Inspired by the observation that models exhibit unexpected vulnerability to changes in illumination, we develop Adversarial Illumination Attack (AIA), an unrestricted adversarial attack that imposes large but imperceptible alterations to the image. The core of the attack lies in simulating adversarial illumination through Planckian jitter, of which the effectiveness comes from a causal chain where the attacker misleads the model by manipulating the confusion factor. We propose an efficient approach to generate adversarial samples without additional models by image gradient regularization. We validate the effectiveness of adversarial illumination in the face of black-box models, data preprocessing, and adversarially trained models through extensive experiments. Experiment results confirm that AIA can be both a lightweight unrestricted attack and a plug-in to boost the effectiveness of other attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就念文发布了新的文献求助10
1秒前
情怀应助学术小垃圾采纳,获得10
1秒前
coconut发布了新的文献求助10
2秒前
时尚的莛完成签到,获得积分10
2秒前
2秒前
淡淡猕猴桃完成签到,获得积分10
5秒前
5秒前
66666完成签到,获得积分10
6秒前
负责吃饭完成签到,获得积分10
6秒前
烟花应助Zhang采纳,获得10
7秒前
8秒前
百鳴完成签到,获得积分10
9秒前
爆爆发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
OAIX完成签到,获得积分10
11秒前
XD完成签到,获得积分10
11秒前
12秒前
lzy完成签到 ,获得积分10
12秒前
fduqyy发布了新的文献求助10
14秒前
科研通AI5应助琪琪的采纳,获得10
15秒前
cloudy90完成签到,获得积分10
15秒前
端庄的小翠完成签到 ,获得积分10
15秒前
16秒前
鱼儿发布了新的文献求助10
16秒前
16秒前
欢呼的夏山完成签到,获得积分10
16秒前
欣喜的火龙果完成签到,获得积分10
16秒前
大力的初夏完成签到,获得积分10
16秒前
松饼完成签到,获得积分10
19秒前
爆爆完成签到,获得积分20
19秒前
黄橙子完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
23秒前
Lucas应助达布妞采纳,获得10
23秒前
23秒前
标701010完成签到,获得积分10
23秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826219
求助须知:如何正确求助?哪些是违规求助? 3368652
关于积分的说明 10451479
捐赠科研通 3087997
什么是DOI,文献DOI怎么找? 1698916
邀请新用户注册赠送积分活动 817190
科研通“疑难数据库(出版商)”最低求助积分说明 770065