Long-term trajectories of depressive symptoms and machine learning techniques for fall prediction in older adults: Evidence from the China Health and Retirement Longitudinal Study (CHARLS)

纵向研究 萧条(经济学) 老年学 心理学 抑郁症状 医学 精神科 认知 宏观经济学 病理 经济
作者
Xiaodong Chen,Shaowu Lin,Yixuan Zheng,Lingxiao He,Ya Fang
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier BV]
卷期号:111: 105012-105012 被引量:7
标识
DOI:10.1016/j.archger.2023.105012
摘要

Falls are the most common adverse outcome of depression in older adults, yet a accurate risk prediction model for falls stratified by distinct long-term trajectories of depressive symptoms is still lacking. We collected the data of 1617 participants from the China Health and Retirement Longitudinal Study register, spanning between 2011 and 2018. The 36 input variables included in the baseline survey were regarded as candidate features. The trajectories of depressive symptoms were classified by the latent class growth model and growth mixture model. Three data balancing technologies and four machine learning algorithms were utilized to develop predictive models for fall classification of depressive prognosis. Depressive symptom trajectories were divided into four categories, i.e., non-symptoms, new-onset increasing symptoms, slowly decreasing symptoms, and persistent high symptoms. The random forest-TomekLinks model achieved the best performance among the case and incident models with an AUC-ROC of 0.844 and 0.731, respectively. In the chronic model, the gradient boosting decision tree-synthetic minority oversampling technique obtained an AUC-ROC of 0.783. In the three models, the depressive symptom score was the most crucial component. The lung function was a common and significant feature in both the case and the chronic models. This study suggests that the ideal model has a good chance of identifying older persons with a high risk of falling stratified by long-term trajectories of depressive symptoms. Baseline depressive symptom score, lung function, income, and injury experience are influential factors associated with falls of depression evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suiting完成签到,获得积分10
4秒前
艳子发布了新的文献求助10
6秒前
研友_VZG7GZ应助lulu采纳,获得10
7秒前
不倦应助suiting采纳,获得10
7秒前
11秒前
郭宇完成签到,获得积分20
11秒前
酷波er应助快乐的90后fjk采纳,获得10
14秒前
xliiii完成签到,获得积分10
14秒前
15秒前
璐宝完成签到,获得积分10
17秒前
落后月亮发布了新的文献求助10
17秒前
17秒前
lulu发布了新的文献求助10
18秒前
Jasper应助梅子酒采纳,获得10
20秒前
binz完成签到,获得积分10
20秒前
nesire发布了新的文献求助10
23秒前
个性松完成签到 ,获得积分10
26秒前
33秒前
隐形曼青应助nesire采纳,获得10
34秒前
37秒前
37秒前
serenity711完成签到 ,获得积分10
37秒前
uouuo完成签到 ,获得积分10
38秒前
leungya完成签到,获得积分10
40秒前
脑洞疼应助知了采纳,获得10
41秒前
科研小白发布了新的文献求助10
42秒前
梅子酒发布了新的文献求助10
43秒前
下论文完成签到,获得积分10
46秒前
wanci应助科研通管家采纳,获得10
51秒前
所所应助科研通管家采纳,获得10
51秒前
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
Hello应助科研通管家采纳,获得10
51秒前
田様应助科研通管家采纳,获得10
51秒前
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
51秒前
天天快乐应助科研通管家采纳,获得10
52秒前
52秒前
小二郎应助科研通管家采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776474
求助须知:如何正确求助?哪些是违规求助? 3321968
关于积分的说明 10208252
捐赠科研通 3037252
什么是DOI,文献DOI怎么找? 1666613
邀请新用户注册赠送积分活动 797594
科研通“疑难数据库(出版商)”最低求助积分说明 757872