已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Long-term trajectories of depressive symptoms and machine learning techniques for fall prediction in older adults: Evidence from the China Health and Retirement Longitudinal Study (CHARLS)

纵向研究 萧条(经济学) 老年学 心理学 抑郁症状 医学 精神科 认知 宏观经济学 病理 经济
作者
Xiaodong Chen,Shaowu Lin,Yixuan Zheng,Lingxiao He,Ya Fang
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier BV]
卷期号:111: 105012-105012 被引量:11
标识
DOI:10.1016/j.archger.2023.105012
摘要

Falls are the most common adverse outcome of depression in older adults, yet a accurate risk prediction model for falls stratified by distinct long-term trajectories of depressive symptoms is still lacking. We collected the data of 1617 participants from the China Health and Retirement Longitudinal Study register, spanning between 2011 and 2018. The 36 input variables included in the baseline survey were regarded as candidate features. The trajectories of depressive symptoms were classified by the latent class growth model and growth mixture model. Three data balancing technologies and four machine learning algorithms were utilized to develop predictive models for fall classification of depressive prognosis. Depressive symptom trajectories were divided into four categories, i.e., non-symptoms, new-onset increasing symptoms, slowly decreasing symptoms, and persistent high symptoms. The random forest-TomekLinks model achieved the best performance among the case and incident models with an AUC-ROC of 0.844 and 0.731, respectively. In the chronic model, the gradient boosting decision tree-synthetic minority oversampling technique obtained an AUC-ROC of 0.783. In the three models, the depressive symptom score was the most crucial component. The lung function was a common and significant feature in both the case and the chronic models. This study suggests that the ideal model has a good chance of identifying older persons with a high risk of falling stratified by long-term trajectories of depressive symptoms. Baseline depressive symptom score, lung function, income, and injury experience are influential factors associated with falls of depression evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棠真完成签到 ,获得积分10
1秒前
温暖眼神完成签到,获得积分10
1秒前
xiuxiuzhang完成签到 ,获得积分10
4秒前
一个要饭界的大佬完成签到,获得积分10
4秒前
奋斗蚂蚁完成签到 ,获得积分10
6秒前
Gideon完成签到,获得积分10
6秒前
科研通AI5应助aujsdhab采纳,获得10
6秒前
7秒前
小枣完成签到 ,获得积分10
7秒前
lx840518完成签到 ,获得积分10
8秒前
小王完成签到 ,获得积分10
8秒前
konosuba完成签到,获得积分0
8秒前
科研通AI2S应助pearson采纳,获得10
8秒前
慕玖淇完成签到 ,获得积分10
10秒前
呆萌向日葵完成签到,获得积分10
10秒前
英俊的铭应助李月月采纳,获得10
10秒前
阳光萌萌完成签到,获得积分10
10秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得150
13秒前
852应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
15秒前
英俊的铭应助标致乐双采纳,获得10
17秒前
小胖完成签到 ,获得积分10
17秒前
脑洞疼应助布丁采纳,获得10
19秒前
正在努力的学术小垃圾完成签到 ,获得积分10
20秒前
Raphael完成签到,获得积分10
20秒前
21秒前
温馨家园完成签到 ,获得积分10
21秒前
小华完成签到 ,获得积分10
22秒前
Augustines完成签到,获得积分10
23秒前
weilei完成签到,获得积分10
24秒前
26秒前
机智乐驹完成签到,获得积分10
27秒前
28秒前
爱拱地的小林猪完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090182
求助须知:如何正确求助?哪些是违规求助? 4304774
关于积分的说明 13414844
捐赠科研通 4130466
什么是DOI,文献DOI怎么找? 2262342
邀请新用户注册赠送积分活动 1266229
关于科研通互助平台的介绍 1200912