Probabilistic spatiotemporal forecasting of wind speed based on multi-network deep ensembles method

概率逻辑 计算机科学 概率预测 深度学习 人工智能 集合预报 人工神经网络 数据挖掘 集成学习 深信不疑网络 卷积神经网络 机器学习
作者
Guanjun Liu,Yun Wang,Hui Qin,Keyan Shen,Shuai Liu,Qin Shen,Yuhua Qu,Jianzhong Zhou
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:209: 231-247 被引量:7
标识
DOI:10.1016/j.renene.2023.03.094
摘要

Obtaining reliable and high-quality wind speed probability forecast results is of great significance to wind energy utilization and power system management. In this paper, multi-network deep ensemble method, which combines the intelligent optimization algorithm and deep ensemble method, is proposed to deal with the probabilistic prediction problems. This method can effectively integrate a variety of different deep learning neural networks and provide reliable uncertainty estimates for prediction. Furthermore, spatiotemporal multi-network deep ensemble model, which employs multi-network deep ensemble method, is proposed to deal with the probabilistic spatiotemporal wind speed forecasting problems. In the model, three advanced convolutional recurrent neural networks are integrated to capture spatiotemporal information from the underlying meteorological variables. Intelligent optimization algorithm is used to assign weights to each network in the ensemble. In addition, an uncertainty quantification method, which quantify the uncertainty by adjusting the network structure and optimize the uncertainty by utilizing the truncated negative log-likelihood scoring rule, is introduced to provide reliable probability forecasts. The proposed model is applied to a real-world case in the United States. The test results demonstrate that spatiotemporal multi-network deep ensemble model can not only provide high-precision point prediction results, but also provide suitable interval predictions and reliable probability prediction results. Moreover, the impact of input features on model prediction results is also evaluated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妙aaa完成签到,获得积分10
刚刚
刚刚
1秒前
千千千千千千青完成签到 ,获得积分10
1秒前
润物无声完成签到,获得积分10
2秒前
从容的月光完成签到 ,获得积分10
2秒前
jieliu发布了新的文献求助10
2秒前
优雅海瑶完成签到,获得积分10
2秒前
科研助手6应助4xi采纳,获得10
2秒前
smiling完成签到 ,获得积分10
2秒前
tinatian270完成签到,获得积分10
3秒前
齐嘉懿发布了新的文献求助10
3秒前
满意兔子发布了新的文献求助10
4秒前
MrFamous完成签到,获得积分10
4秒前
5秒前
Kyrie完成签到,获得积分10
5秒前
明理萃完成签到 ,获得积分10
5秒前
fin发布了新的文献求助10
6秒前
chuxin完成签到,获得积分10
6秒前
hao发布了新的文献求助10
6秒前
lovence完成签到,获得积分10
6秒前
zhangpeng完成签到,获得积分10
7秒前
七慕凉应助ww960517采纳,获得10
8秒前
8秒前
CodeCraft应助Henry采纳,获得10
8秒前
今后应助real采纳,获得10
8秒前
优秀的流沙完成签到,获得积分10
8秒前
8秒前
拾光完成签到,获得积分10
9秒前
SciGPT应助Biohacking采纳,获得10
9秒前
hea完成签到,获得积分10
9秒前
zz发布了新的文献求助10
9秒前
慕青应助jieliu采纳,获得10
9秒前
雨下着的坡道完成签到,获得积分10
10秒前
NexusExplorer应助专注念芹采纳,获得10
10秒前
人生苦短完成签到,获得积分10
10秒前
水薄荷完成签到,获得积分10
10秒前
10秒前
闪闪寒荷完成签到 ,获得积分10
10秒前
OER完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795803
求助须知:如何正确求助?哪些是违规求助? 3340820
关于积分的说明 10302439
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677679
邀请新用户注册赠送积分活动 805534
科研通“疑难数据库(出版商)”最低求助积分说明 762642