材料科学
三元运算
居里温度
能量(信号处理)
钴
Atom(片上系统)
结晶学
机器学习
凝聚态物理
铁磁性
物理
冶金
计算机科学
化学
嵌入式系统
量子力学
程序设计语言
作者
Timothy Liao,Weiyi Xia,Masahiro Sakurai,Renhai Wang,Chao Zhang,Huaijun Sun,Kai‐Ming Ho,Cai‐Zhuang Wang,James R. Chelikowsky
标识
DOI:10.1103/physrevmaterials.7.034410
摘要
We employ machine-learning (ML) combined with first principles calculations to discover different rare-earth-free magnetic iron-cobalt silicide compounds. Deep machine-learning models are used to provide rapid screening of over 350 000 hypothetical structures to select a small fraction of promising structures and compositions for further studies by first-principles calculations. An adaptive genetic algorithm is used to search for lower energy structures based on the promising chemical compositions. Such a ML-guided approach dramatically accelerates the pace of materials discovery. We discover four new ternary Fe-Co-Si compounds, which exhibit desirable properties such as a large magnetic polarization $({J}_{s}>1.0\phantom{\rule{0.28em}{0ex}}\mathrm{T})$, a significant easy-axis magnetic anisotropy $({K}_{1}\ensuremath{\ge}1.0\phantom{\rule{0.28em}{0ex}}\mathrm{MJ}/{\mathrm{m}}^{3})$, and a high Curie temperature $({T}_{\mathrm{C}}>840\phantom{\rule{0.28em}{0ex}}\mathrm{K})$. Moreover, the formation energies of these compounds are all within 70 meV/atom relative to the ternary convex hull, offering the possibility of synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI