MT2DInv-Unet: A 2D magnetotelluric inversion method based on deep-learning technology

大地电磁法 反演(地质) 计算机科学 算法 深度学习 人工智能 地球物理学 地震学 地质学 电气工程 工程类 电阻率和电导率 构造学
作者
Kejia Pan,Weiwei Ling,Jiajing Zhang,Xin Zhong,Zhengyong Ren,Shuanggui Hu,Dongdong He,Jingtian Tang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (2): G13-G27
标识
DOI:10.1190/geo2023-0004.1
摘要

Traditional gradient-based inversion methods usually suffer from the problems of falling into local minima and relying heavily on initial guesses. Deep-learning methods have received increasing attention due to their excellent nonlinear fitting ability. However, given the recent application of deep-learning methods in the field of magnetotelluric (MT) inversion, there are currently challenges associated with achieving high inversion resolution and extracting sufficient features. We develop a neural network model (called MT2DInv-Unet) based on the deformable convolution for 2D MT inversion to approximate the nonlinear mapping from the MT response data to the resistivity model. The deformable convolution is achieved by adding an offset to each sample point of the conventional convolution operation, which extracts hidden relationships and allows the flexible adjustment of the size and shape of the feature region. Meanwhile, we design the network structure with multiscale residual blocks, which effectively extract the multiscale features of the MT response data. This design not only enhances the network performance but also alleviates issues such as vanishing gradients and network degradation. The results of synthetic models indicate that our network inversion method has stable convergence, good robustness, and generalization performance, and it performs better than the fully convolutional neural network and U-Net network. Finally, the inversion results of field data show that MT2DInv-Unet can effectively obtain a reliable underground resistivity structure and has a good application prospect in MT inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
刚刚
Hello应助彩色镜子采纳,获得10
刚刚
852应助wo采纳,获得10
1秒前
科研通AI5应助眼睛大半烟采纳,获得10
1秒前
天炎磊磊完成签到,获得积分10
2秒前
zmj发布了新的文献求助10
3秒前
3秒前
Awen发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
汪汪发布了新的文献求助10
4秒前
5秒前
GodLoveEdison完成签到,获得积分10
5秒前
kgrvlm发布了新的文献求助10
5秒前
5秒前
6秒前
iNk应助ly采纳,获得20
6秒前
CodeCraft应助汤圆采纳,获得10
6秒前
6秒前
顺风顺水的薇容完成签到 ,获得积分10
7秒前
7秒前
科研通AI5应助昌莆采纳,获得10
7秒前
summer应助清修采纳,获得10
7秒前
无奈的石头完成签到,获得积分20
7秒前
NexusExplorer应助谨慎储采纳,获得10
7秒前
共享精神应助引子采纳,获得10
7秒前
8秒前
Harbor完成签到,获得积分10
8秒前
322小弟完成签到,获得积分10
8秒前
8秒前
飞蝴蝶完成签到,获得积分10
8秒前
淡淡的水香完成签到,获得积分10
8秒前
9秒前
NexusExplorer应助顺利寄文采纳,获得10
9秒前
XD824发布了新的文献求助10
9秒前
科研通AI5应助强强采纳,获得100
9秒前
fuxixixi完成签到,获得积分10
10秒前
CC完成签到,获得积分20
10秒前
322小弟发布了新的文献求助10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806041
求助须知:如何正确求助?哪些是违规求助? 3350870
关于积分的说明 10351903
捐赠科研通 3066760
什么是DOI,文献DOI怎么找? 1684143
邀请新用户注册赠送积分活动 809333
科研通“疑难数据库(出版商)”最低求助积分说明 765463