Pesticides, cancer, and oxidative stress: an application of machine learning to NHANES data

全国健康与营养检查调查 环境卫生 杀虫剂 逻辑回归 优势比 氧化应激 医学 癌症 置信区间 毒理 内科学 生物 人口 生态学
作者
Yanbin Liu,Kunze Li,Chaofan Li,Zeyao Feng,Yifan Cai,Yu Zhang,Yijian Hu,Xinyu Wei,Peizhuo Yao,Xuanyu Liu,Yiwei Jia,Wei Lv,Yinbin Zhang,Zhangjian Zhou,Fei Wu,Wanjun Yan,Shuqun Zhang,Chong Du
出处
期刊:Environmental Sciences Europe [Springer Science+Business Media]
卷期号:36 (1)
标识
DOI:10.1186/s12302-023-00834-0
摘要

Abstract Background The large-scale application of pyrethroids and organophosphorus pesticides has great benefits for pest control. However, the increase of cancer incidence rate in recent years has also caused public concern about the health risks of pesticides. Hence, we utilized data from the National Health and Nutrition Examination Survey (NHANES) to assess the association and risk between pesticide exposure and several cancers, along with the comprehensive impact of oxidative stress. In this study, six cancers and six common pesticides were included to analyze their correlation and risk. And the levels of eight oxidative stress marks and two inflammatory markers were used for stratified analysis. Multiple logistic regression analysis was applied to estimate the odds ratio and 95% confidence intervals. Machine learning prediction models were established to evaluate the importance of different exposure factors. Results According to the data analyzed, each pesticide increased the risk of three to four out of six cancers on average. Iron, aspartate aminotransferase (AST), and gamma glutamyl transferase levels positively correlated with cancer risk in most cases of pesticide exposure. Except for demographic factors, factors such as AST, iron, and 3-phenoxybenzoic acid showed high contributions to the random forest model, which was consistent with our expectations. The receiver operating characteristic curve showed that the prediction model had sufficient accuracy (74.2%). Conclusion Our results indicated that specific pesticide exposure increased the risk of cancer, which may be mediated by various oxidative stress mechanisms. Additionally, some biochemical indicators have the potential to be screened for cancer prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一应助lrll采纳,获得20
2秒前
2秒前
7秒前
风清扬应助圣代采纳,获得10
8秒前
jxdw620完成签到 ,获得积分10
9秒前
苏酥完成签到,获得积分10
9秒前
10秒前
hah_archer1完成签到,获得积分10
10秒前
11秒前
Yuan发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
bkagyin应助wl20130000采纳,获得10
12秒前
欢欢发布了新的文献求助10
12秒前
忍冬发布了新的文献求助30
12秒前
温初曼发布了新的文献求助10
14秒前
14秒前
cyuan发布了新的文献求助10
15秒前
15秒前
aa完成签到,获得积分10
16秒前
17秒前
哈哈哈发布了新的文献求助10
17秒前
18秒前
18秒前
越红完成签到,获得积分10
19秒前
diudiu发布了新的文献求助10
22秒前
完美世界应助Yuan采纳,获得10
23秒前
26秒前
逍遥完成签到,获得积分10
27秒前
小王要努力应助gnr2000采纳,获得10
30秒前
orixero应助许嘘嘘嘘嘘采纳,获得10
32秒前
哈哈哈完成签到,获得积分10
33秒前
科研通AI5应助方方采纳,获得10
33秒前
可爱的函函应助hh采纳,获得10
34秒前
量子星尘发布了新的文献求助10
34秒前
忍冬完成签到,获得积分10
35秒前
游侠客完成签到,获得积分10
35秒前
35秒前
默默的无敌完成签到,获得积分10
37秒前
鬼鬼的眼睛完成签到,获得积分10
37秒前
小蘑菇应助LFY采纳,获得10
40秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867218
求助须知:如何正确求助?哪些是违规求助? 3409493
关于积分的说明 10663865
捐赠科研通 3133679
什么是DOI,文献DOI怎么找? 1728374
邀请新用户注册赠送积分活动 832984
科研通“疑难数据库(出版商)”最低求助积分说明 780514