Purified and Unified Steganographic Network

隐写术 计算机科学 人工智能 嵌入
作者
Guobiao Li,Sheng Li,Zicong Luo,Zhenxing Qian,Xinpeng Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.17210
摘要

Steganography is the art of hiding secret data into the cover media for covert communication. In recent years, more and more deep neural network (DNN)-based steganographic schemes are proposed to train steganographic networks for secret embedding and recovery, which are shown to be promising. Compared with the handcrafted steganographic tools, steganographic networks tend to be large in size. It raises concerns on how to imperceptibly and effectively transmit these networks to the sender and receiver to facilitate the covert communication. To address this issue, we propose in this paper a Purified and Unified Steganographic Network (PUSNet). It performs an ordinary machine learning task in a purified network, which could be triggered into steganographic networks for secret embedding or recovery using different keys. We formulate the construction of the PUSNet into a sparse weight filling problem to flexibly switch between the purified and steganographic networks. We further instantiate our PUSNet as an image denoising network with two steganographic networks concealed for secret image embedding and recovery. Comprehensive experiments demonstrate that our PUSNet achieves good performance on secret image embedding, secret image recovery, and image denoising in a single architecture. It is also shown to be capable of imperceptibly carrying the steganographic networks in a purified network. Code is available at \url{https://github.com/albblgb/PUSNet}
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Meow完成签到,获得积分10
1秒前
2秒前
喜悦兰完成签到,获得积分10
2秒前
3秒前
chenzhiyu完成签到,获得积分10
3秒前
读研暴躁哥完成签到,获得积分20
3秒前
聪慧紫菱完成签到,获得积分10
4秒前
归羽完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
bioglia完成签到,获得积分10
6秒前
quzhenzxxx完成签到 ,获得积分10
6秒前
6秒前
欣欣然发布了新的文献求助10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得30
7秒前
我是老大应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
不再方里发布了新的文献求助10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
进击的PhD应助科研通管家采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
8秒前
香蕉觅云应助Guanjr采纳,获得10
9秒前
苗苗完成签到 ,获得积分10
9秒前
9秒前
丰富硬币完成签到 ,获得积分10
10秒前
11秒前
善学以致用应助再见不难采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652750
求助须知:如何正确求助?哪些是违规求助? 4788147
关于积分的说明 15061398
捐赠科研通 4811163
什么是DOI,文献DOI怎么找? 2573713
邀请新用户注册赠送积分活动 1529555
关于科研通互助平台的介绍 1488319