A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging

化学 质谱成像 马尔迪成像 质谱法 电离 基质辅助激光解吸/电离 离子 质谱 色谱法 分析物 分析化学(期刊) 解吸 吸附 有机化学
作者
Tassiani Sarretto,Wil Gardner,Daniel Brungs,Sarbar Napaki,Paul J. Pigram,Shane R. Ellis
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:35 (3): 466-475 被引量:1
标识
DOI:10.1021/jasms.3c00357
摘要

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟花应助Dicy采纳,获得10
1秒前
新星发布了新的文献求助10
1秒前
2秒前
mingzzz1发布了新的文献求助10
3秒前
3秒前
3秒前
田田田田完成签到,获得积分10
3秒前
千俞完成签到 ,获得积分10
4秒前
panpanpan发布了新的文献求助10
5秒前
要吃虾饺发布了新的文献求助10
5秒前
阿冬呐完成签到,获得积分10
6秒前
ning_yang发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
安好发布了新的文献求助10
7秒前
大圆饼子发布了新的文献求助10
8秒前
研友_ZG4ml8发布了新的文献求助10
8秒前
Nozomi发布了新的文献求助10
9秒前
姚小楠发布了新的文献求助10
10秒前
mingzzz1完成签到,获得积分10
10秒前
11秒前
11秒前
大圆饼子完成签到,获得积分10
12秒前
研友_ZG4ml8完成签到,获得积分10
14秒前
落寞代桃发布了新的文献求助10
14秒前
中级中级完成签到,获得积分10
14秒前
cxj完成签到,获得积分10
15秒前
轻轻的吻发布了新的文献求助10
16秒前
Ava应助酷炫的春天采纳,获得10
16秒前
17秒前
充电宝应助Nozomi采纳,获得10
17秒前
NexusExplorer应助迷路的藏鸟采纳,获得10
20秒前
慕青应助丰富的夜白采纳,获得10
21秒前
LZY完成签到,获得积分10
21秒前
Dicy发布了新的文献求助10
22秒前
CHyaa完成签到,获得积分10
22秒前
往往超可爱完成签到 ,获得积分10
23秒前
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4193165
求助须知:如何正确求助?哪些是违规求助? 3728962
关于积分的说明 11744754
捐赠科研通 3404431
什么是DOI,文献DOI怎么找? 1867844
邀请新用户注册赠送积分活动 924178
科研通“疑难数据库(出版商)”最低求助积分说明 835203