A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging

化学 质谱成像 马尔迪成像 质谱法 电离 基质辅助激光解吸/电离 离子 质谱 色谱法 分析物 分析化学(期刊) 解吸 有机化学 吸附
作者
Tassiani Sarretto,Wil Gardner,Daniel Brungs,Sarbar Napaki,Paul J. Pigram,Shane R. Ellis
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:35 (3): 466-475 被引量:1
标识
DOI:10.1021/jasms.3c00357
摘要

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenwei发布了新的文献求助20
1秒前
2秒前
小巧的雅旋完成签到,获得积分10
2秒前
脑洞疼应助hhhhhhhhhhh采纳,获得10
2秒前
3秒前
4秒前
4秒前
5秒前
受伤书白发布了新的文献求助30
6秒前
7秒前
司空豁发布了新的文献求助10
10秒前
10秒前
Orange应助永毅采纳,获得30
10秒前
在水一方应助背后的鞋垫采纳,获得10
10秒前
北北发布了新的文献求助10
10秒前
rui发布了新的文献求助30
11秒前
12秒前
12秒前
wenwei完成签到,获得积分20
13秒前
ding应助西木采纳,获得30
14秒前
14秒前
NexusExplorer应助飞先生采纳,获得10
15秒前
初一发布了新的文献求助10
16秒前
hhhhhhhhhhh发布了新的文献求助10
16秒前
17秒前
司空豁发布了新的文献求助10
17秒前
羊大侠发布了新的文献求助10
18秒前
18秒前
我是125完成签到,获得积分10
19秒前
柯一一应助rui采纳,获得10
19秒前
追梦小帅发布了新的文献求助10
21秒前
nenoaowu发布了新的文献求助10
21秒前
乐乐应助阿曼尼采纳,获得10
23秒前
halashao发布了新的文献求助10
23秒前
舟遥完成签到,获得积分10
23秒前
23秒前
受伤书白发布了新的文献求助10
23秒前
初一完成签到,获得积分10
23秒前
GAOYI完成签到,获得积分10
24秒前
善学以致用应助棉花糖采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915612
求助须知:如何正确求助?哪些是违规求助? 3461081
关于积分的说明 10915307
捐赠科研通 3187990
什么是DOI,文献DOI怎么找? 1762213
邀请新用户注册赠送积分活动 852659
科研通“疑难数据库(出版商)”最低求助积分说明 793530