A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging

化学 质谱成像 马尔迪成像 质谱法 电离 基质辅助激光解吸/电离 离子 质谱 色谱法 分析物 分析化学(期刊) 解吸 有机化学 吸附
作者
Tassiani Sarretto,Wil Gardner,Daniel Brungs,Sarbar Napaki,Paul J. Pigram,Shane R. Ellis
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:35 (3): 466-475 被引量:1
标识
DOI:10.1021/jasms.3c00357
摘要

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Deposit完成签到 ,获得积分10
1秒前
3秒前
3秒前
小人物的坚持完成签到 ,获得积分10
4秒前
4秒前
4秒前
aishaniya发布了新的文献求助30
6秒前
打打应助kongmou采纳,获得10
7秒前
李健的小迷弟应助katsuras采纳,获得10
7秒前
闪闪完成签到,获得积分10
9秒前
淡然伊发布了新的文献求助10
9秒前
丘比特应助wangjue采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
拾间完成签到,获得积分10
9秒前
优秀青烟发布了新的文献求助10
10秒前
10秒前
BBQ完成签到,获得积分10
11秒前
11秒前
12秒前
gwff发布了新的文献求助10
13秒前
sniper完成签到 ,获得积分10
13秒前
微笑梦岚发布了新的文献求助30
13秒前
Chi19334098402完成签到 ,获得积分10
13秒前
14秒前
FashionBoy应助Aping采纳,获得10
14秒前
Chris完成签到,获得积分10
14秒前
14秒前
猪猪hero应助HaoZhang采纳,获得10
15秒前
aliderichang完成签到 ,获得积分10
15秒前
jlb完成签到,获得积分10
16秒前
郭子啊完成签到 ,获得积分10
16秒前
归尘发布了新的文献求助10
17秒前
听雨眠完成签到 ,获得积分10
17秒前
17秒前
18秒前
淡然伊完成签到,获得积分10
18秒前
18秒前
lqllll完成签到,获得积分10
19秒前
19秒前
划水的鱼发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602770
求助须知:如何正确求助?哪些是违规求助? 4687823
关于积分的说明 14851436
捐赠科研通 4685324
什么是DOI,文献DOI怎么找? 2540087
邀请新用户注册赠送积分活动 1506810
关于科研通互助平台的介绍 1471448