A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging

化学 质谱成像 马尔迪成像 质谱法 电离 基质辅助激光解吸/电离 离子 质谱 色谱法 分析物 分析化学(期刊) 解吸 吸附 有机化学
作者
Tassiani Sarretto,Wil Gardner,Daniel Brungs,Sarbar Napaki,Paul J. Pigram,Shane R. Ellis
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:35 (3): 466-475 被引量:1
标识
DOI:10.1021/jasms.3c00357
摘要

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的冬灵完成签到,获得积分10
1秒前
1秒前
天天快乐应助Luminous采纳,获得10
3秒前
小林发布了新的文献求助20
3秒前
Bruce完成签到,获得积分10
5秒前
852应助发顶刊采纳,获得10
10秒前
Mengdi发布了新的文献求助10
10秒前
兴奋小丸子发布了新的文献求助200
10秒前
缓慢笑晴完成签到,获得积分10
11秒前
林十三完成签到,获得积分10
11秒前
123发布了新的文献求助20
11秒前
13秒前
可爱的函函应助雨天有伞采纳,获得10
14秒前
14秒前
四块五完成签到,获得积分10
15秒前
三金完成签到,获得积分10
15秒前
pluto应助晨曦采纳,获得10
16秒前
qingsyxuan完成签到,获得积分10
17秒前
17秒前
火星上的冰岚关注了科研通微信公众号
17秒前
爱笑如冰完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
斯文败类应助长风采纳,获得10
19秒前
Syc发布了新的文献求助10
20秒前
布可完成签到,获得积分10
21秒前
科研通AI6应助香樟沐雪采纳,获得10
22秒前
超人完成签到,获得积分10
22秒前
刘小蕊发布了新的文献求助10
22秒前
pignai发布了新的文献求助10
23秒前
23秒前
23秒前
可爱的函函应助zz采纳,获得10
23秒前
23秒前
24秒前
四块五发布了新的文献求助10
26秒前
apt完成签到 ,获得积分10
26秒前
Jasper应助hx采纳,获得10
26秒前
xiyang完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310979
求助须知:如何正确求助?哪些是违规求助? 4455140
关于积分的说明 13862110
捐赠科研通 4343301
什么是DOI,文献DOI怎么找? 2385093
邀请新用户注册赠送积分活动 1379503
关于科研通互助平台的介绍 1347797