A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging

化学 质谱成像 马尔迪成像 质谱法 电离 基质辅助激光解吸/电离 离子 质谱 色谱法 分析物 分析化学(期刊) 解吸 有机化学 吸附
作者
Tassiani Sarretto,Wil Gardner,Daniel Brungs,Sarbar Napaki,Paul J. Pigram,Shane R. Ellis
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:35 (3): 466-475 被引量:1
标识
DOI:10.1021/jasms.3c00357
摘要

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小民工应助lululu采纳,获得80
1秒前
钟钟发布了新的文献求助30
5秒前
共享精神应助国家栋梁采纳,获得10
11秒前
orixero应助妮儿采纳,获得10
13秒前
14秒前
sfaaeaadefef完成签到,获得积分10
16秒前
18秒前
inter发布了新的文献求助30
19秒前
21秒前
22秒前
jinx123456完成签到,获得积分10
22秒前
zzzzzx发布了新的文献求助10
23秒前
wxd发布了新的文献求助10
24秒前
高冷难神发布了新的文献求助60
25秒前
25秒前
朴素的天蓝完成签到,获得积分10
25秒前
mm完成签到 ,获得积分10
25秒前
26秒前
善学以致用应助sure采纳,获得10
26秒前
豌豆发布了新的文献求助10
30秒前
赘婿应助豌豆采纳,获得10
33秒前
luoshikun完成签到,获得积分10
35秒前
38秒前
38秒前
sure发布了新的文献求助10
41秒前
科研通AI5应助呆呆兽采纳,获得200
44秒前
50秒前
思源应助清新的音响采纳,获得10
51秒前
53秒前
不知道发布了新的文献求助10
53秒前
jenningseastera应助qiany采纳,获得10
54秒前
欣忆完成签到 ,获得积分10
56秒前
小马甲应助盛宇大天才采纳,获得10
57秒前
58秒前
南有乔木发布了新的文献求助10
58秒前
Rowan发布了新的文献求助10
59秒前
吴下阿萌完成签到,获得积分10
59秒前
皮蛋robin汤完成签到 ,获得积分10
1分钟前
1分钟前
小蘑菇应助地表最强牛牛采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324343
关于积分的说明 10218037
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758437