A meta‐analysis of diabetes risk prediction models applied to prediabetes screening

糖尿病前期 医学 检查表 糖尿病 荟萃分析 梅德林 预测建模 人口 系统回顾 2型糖尿病 内科学 环境卫生 计算机科学 机器学习 心理学 内分泌学 政治学 法学 认知心理学
作者
Yujin Liu,Sunrui Yu,Wenming Feng,Hangfeng Mo,Yuting Hua,Mei Zhang,Zhichao Zhu,Xiaoping Zhang,Zhen Wu,Lanzhen Zheng,Xiaoqiu Wu,Jiantong Shen,Wei Qiu,Jianlin Lou
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:26 (5): 1593-1604 被引量:8
标识
DOI:10.1111/dom.15457
摘要

Abstract Aim To provide a systematic overview of diabetes risk prediction models used for prediabetes screening to promote primary prevention of diabetes. Methods The Cochrane, PubMed, Embase, Web of Science and China National Knowledge Infrastructure (CNKI) databases were searched for a comprehensive search period of 30 August 30, 2023, and studies involving diabetes prediction models for screening prediabetes risk were included in the search. The Quality Assessment Checklist for Diagnostic Studies (QUADAS‐2) tool was used for risk of bias assessment and Stata and R software were used to pool model effect sizes. Results A total of 29 375 articles were screened, and finally 20 models from 24 studies were included in the systematic review. The most common predictors were age, body mass index, family history of diabetes, history of hypertension, and physical activity. Regarding the indicators of model prediction performance, discrimination and calibration were only reported in 79.2% and 4.2% of studies, respectively, resulting in significant heterogeneity in model prediction results, which may be related to differences between model predictor combinations and lack of important methodological information. Conclusions Numerous models are used to predict diabetes, and as there is an association between prediabetes and diabetes, researchers have also used such models for screening the prediabetic population. Although it is a new clinical practice to explore, differences in glycaemic metabolic profiles, potential complications, and methods of intervention between the two populations cannot be ignored, and such differences have led to poor validity and accuracy of the models. Therefore, there is no recommended optimal model, and it is not recommended to use existing models for risk identification in alternative populations; future studies should focus on improving the clinical relevance and predictive performance of existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助xxxxx采纳,获得10
2秒前
贝利亚完成签到,获得积分10
2秒前
自觉画笔完成签到 ,获得积分10
2秒前
Nancy完成签到,获得积分10
3秒前
5秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
5秒前
cjw完成签到 ,获得积分10
6秒前
22222发布了新的文献求助10
8秒前
yuki完成签到 ,获得积分10
9秒前
王者归来完成签到,获得积分10
9秒前
9秒前
10秒前
lige完成签到 ,获得积分10
12秒前
Cyrus完成签到 ,获得积分10
13秒前
dddd发布了新的文献求助30
15秒前
奥特曼发布了新的文献求助10
15秒前
组难装完成签到,获得积分20
16秒前
薄荷味完成签到 ,获得积分10
17秒前
17秒前
自信号厂完成签到 ,获得积分10
19秒前
19秒前
顺心凡之完成签到,获得积分10
20秒前
郑亚铎发布了新的文献求助10
20秒前
奥特曼完成签到,获得积分10
22秒前
666发布了新的文献求助10
23秒前
24秒前
24秒前
老实尔烟完成签到,获得积分10
24秒前
Lolo完成签到 ,获得积分10
24秒前
欣喜书蕾完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
空白完成签到 ,获得积分10
28秒前
郑亚铎完成签到,获得积分10
28秒前
科研通AI5应助skyleon采纳,获得10
29秒前
Csy完成签到,获得积分10
30秒前
惠飞薇发布了新的文献求助10
31秒前
SilentStorm完成签到,获得积分10
32秒前
character577完成签到,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779459
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220692
捐赠科研通 3040129
什么是DOI,文献DOI怎么找? 1668576
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522