Joint Optimization of Device Selection and Resource Allocation for Multiple Federations in Federated Edge Learning

计算机科学 资源配置 选择(遗传算法) 接头(建筑物) GSM演进的增强数据速率 边缘设备 资源管理(计算) 分布式计算 计算机网络 人工智能 操作系统 建筑工程 云计算 工程类
作者
Shucun Fu,Fang Dong,Dian Shen,Jinghui Zhang,Zhaowu Huang,Qiang He
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 251-262 被引量:6
标识
DOI:10.1109/tsc.2023.3342435
摘要

Federated edge learning (FEEL) is a promising collaborative paradigm, which employs edge devices (EDs) to train machine learning models for a federation. It opens countless opportunities to enable edge intelligence. The increasingly diversified demands for intelligent services are driving the deployment of various federations at the edge. Existing works on FEEL focus on a single federation and ignore inter-federation device competition and intra-device resource allocation, which hinders the applications of FEEL. To address this issue, this article first investigates the bottlenecks of executing multiple federations and builds a joint optimization model as a two-stage Stackelberg game involving device selection and resource allocation. To tackle the problem efficiently, we present a game-theoretical approach named D evice S election and R esource A llocation for M ultiple F ederations G ame (DSRAMF-G). First, following the arbitrary device selection of leaders (i.e., federations), the time cost minimization of followers (i.e., EDs) is modeled as a convex problem to obtain the optimal resource allocation. Then, based on followers' optimal responses, device selection is modeled as a congestion game. We prove the existence of the Nash equilibrium and propose a decentralized mechanism. Finally, extensive experiments show that DSRAMF-G significantly outperforms the state-of-the-art methods, achieving up to 5.9x training speedup and 2.8x resource-savings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黄永祥发布了新的文献求助10
1秒前
3秒前
勇者小超人完成签到 ,获得积分10
3秒前
4秒前
cccc发布了新的文献求助10
5秒前
Clover完成签到,获得积分10
6秒前
jingyu完成签到,获得积分10
7秒前
黄永祥完成签到,获得积分10
7秒前
科目三应助xiu采纳,获得10
7秒前
爆米花应助无情的宛儿采纳,获得10
9秒前
9秒前
luoshikun发布了新的文献求助10
10秒前
小洋甘完成签到,获得积分10
10秒前
G明明完成签到,获得积分10
10秒前
11秒前
shinkai完成签到,获得积分10
12秒前
小马甲应助礽粥粥采纳,获得10
13秒前
14秒前
15秒前
16秒前
某某发布了新的文献求助10
17秒前
李家新29完成签到,获得积分10
18秒前
cccc完成签到,获得积分10
18秒前
19秒前
科研通AI5应助luoshikun采纳,获得10
19秒前
SYLH应助流沙采纳,获得10
20秒前
hanacc发布了新的文献求助10
20秒前
pluto应助cxrrabbit采纳,获得20
20秒前
芒果发布了新的文献求助10
21秒前
xiaorui发布了新的文献求助10
21秒前
大模型应助1762120采纳,获得10
22秒前
Ava应助1762120采纳,获得10
22秒前
CipherSage应助1762120采纳,获得10
22秒前
脑洞疼应助1762120采纳,获得10
22秒前
爱科研的小成完成签到,获得积分10
22秒前
周心雨完成签到,获得积分10
23秒前
alhn完成签到,获得积分20
23秒前
lee发布了新的文献求助10
25秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786018
求助须知:如何正确求助?哪些是违规求助? 3331550
关于积分的说明 10251498
捐赠科研通 3046914
什么是DOI,文献DOI怎么找? 1672269
邀请新用户注册赠送积分活动 801207
科研通“疑难数据库(出版商)”最低求助积分说明 760020