3D Bioprinting Technology Optimization Using Machine Learning

计算机科学 3D生物打印 人工智能 机器学习 工程类 组织工程 生物医学工程
作者
Kuldeep Singh Kaswan,Jagjit Singh Dhatterwal,Reenu Batra,Balamurugan Balusamy,E. Gangadevi
标识
DOI:10.1002/9781394204878.ch15
摘要

Three-dimensional (3D) bioprinting technology has emerged as a revolutionary approach in tissue engineering and regenerative medicine, offering the potential to fabricate complex and functional biological constructs. As the field continues to evolve, researchers have recognized the importance of incorporating machine learning (ML) techniques to optimize and enhance the bioprinting process. This review aims to provide a comprehensive overview of recent trends and advances in machine-learning-optimized 3D bioprinting technology. First, we present an introduction to the fundamental principles of 3D bioprinting, highlighting the significance of bioink formulation, printing techniques, and post-printing processes. Subsequently, we delve into the utilization of machine learning algorithms for various aspects of 3D bioprinting, including image analysis, material characterization, process optimization, and quality control. We discuss the integration of ML algorithms with bioprinting platforms to enable real-time monitoring, feedback control, and adaptive optimization of printing parameters. Moreover, this review explores the emerging applications of machine-learning-optimized 3D bioprinting technology in tissue engineering, organ-on-a-chip systems, drug screening, and personalized medicine. We examine how ML techniques can facilitate the design and fabrication of complex tissue constructs with enhanced biological functionality, structural integrity, and biocompatibility. Additionally, we discuss the challenges and future prospects of integrating machine learning into the bioprinting workflow, including data acquisition, algorithm development, and regulatory considerations. Overall, this review highlights the transformative potential of machine-learning-optimized 3D bioprinting technology in advancing the field of tissue engineering and regenerative medicine. By leveraging the capabilities of machine learning, researchers can harness the power of data-driven optimization, enabling faster and more accurate bioprinting processes. With further advancements in ML algorithms, data acquisition techniques, and interdisciplinary collaborations, the integration of machine learning and 3D bioprinting holds promise for the development of next-generation biofabrication systems with unprecedented capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
newnew完成签到,获得积分10
1秒前
忧伤的慕梅完成签到 ,获得积分10
4秒前
清欢完成签到,获得积分10
23秒前
hellokitty完成签到,获得积分10
26秒前
cdercder应助oleskarabach采纳,获得10
28秒前
cdercder应助oleskarabach采纳,获得10
28秒前
火星上的之卉完成签到 ,获得积分10
36秒前
大力的诗蕾完成签到 ,获得积分10
39秒前
CLTTT完成签到,获得积分10
42秒前
Cai完成签到,获得积分10
51秒前
颜陌完成签到,获得积分10
55秒前
58秒前
崩溃完成签到,获得积分10
58秒前
zmy完成签到,获得积分10
58秒前
DDDazhi完成签到,获得积分10
59秒前
zmy发布了新的文献求助30
1分钟前
1分钟前
天天快乐应助斯文的傲珊采纳,获得10
1分钟前
拼搏的败完成签到 ,获得积分10
1分钟前
alanbike完成签到,获得积分10
1分钟前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
fabius0351完成签到 ,获得积分10
1分钟前
陈秋完成签到,获得积分10
1分钟前
小瓶盖完成签到 ,获得积分10
1分钟前
Never stall完成签到 ,获得积分10
2分钟前
隐形曼青应助麦冬粑粑采纳,获得10
2分钟前
千玺的小粉丝儿完成签到,获得积分10
2分钟前
哥哥完成签到,获得积分10
2分钟前
贼吖完成签到 ,获得积分10
2分钟前
河鲸完成签到 ,获得积分10
2分钟前
温馨完成签到 ,获得积分10
2分钟前
共享精神应助俏皮的修杰采纳,获得20
2分钟前
Jankim完成签到 ,获得积分10
2分钟前
飞云完成签到 ,获得积分10
2分钟前
Young完成签到 ,获得积分10
2分钟前
谦让的牛排完成签到 ,获得积分10
2分钟前
热狗完成签到 ,获得积分10
2分钟前
超级的千青完成签到 ,获得积分10
2分钟前
刘五十七完成签到 ,获得积分10
2分钟前
墨泉完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244310
捐赠科研通 3045450
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759544