Two‐stage deep‐learning‐based colonoscopy polyp detection incorporating fisheye and reflection correction

结肠镜检查 人工智能 卷积神经网络 医学 深度学习 计算机科学 接收机工作特性 阶段(地层学) 大肠息肉 放射科 计算机视觉 模式识别(心理学) 结直肠癌 内科学 古生物学 癌症 生物
作者
Chen‐Ming Hsu,Tsung‐Hsing Chen,Chien‐Chang Hsu,C.J. Wu,Chun‐Jung Lin,Puo‐Hsien Le,Cheng‐Yu Lin,Tony Kuo
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:39 (4): 733-739 被引量:2
标识
DOI:10.1111/jgh.16470
摘要

Abstract Background and Aim Colonoscopy is a useful method for the diagnosis and management of colorectal diseases. Many computer‐aided systems have been developed to assist clinicians in detecting colorectal lesions by analyzing colonoscopy images. However, fisheye‐lens distortion and light reflection in colonoscopy images can substantially affect the clarity of these images and their utility in detecting polyps. This study proposed a two‐stage deep‐learning model to correct distortion and reflections in colonoscopy images and thus facilitate polyp detection. Methods Images were collected from the PolypSet dataset, the Kvasir‐SEG dataset, and one medical center's patient archiving and communication system. The training, validation, and testing datasets comprised 808, 202, and 1100 images, respectively. The first stage involved the correction of fisheye‐related distortion in colonoscopy images and polyp detection, which was performed using a convolutional neural network. The second stage involved the use of generative and adversarial networks for correcting reflective colonoscopy images before the convolutional neural network was used for polyp detection. Results The model had higher accuracy when it was validated using corrected images than when it was validated using uncorrected images (96.8% vs 90.8%, P < 0.001). The model's accuracy in detecting polyps in the Kvasir‐SEG dataset reached 96%, and the area under the receiver operating characteristic curve was 0.94. Conclusion The proposed model can facilitate the clinical diagnosis of colorectal polyps and improve the quality of colonoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuang发布了新的文献求助10
1秒前
2秒前
梅思双发布了新的文献求助30
2秒前
Luminous1123完成签到,获得积分10
2秒前
搜集达人应助rrrrrruuuuuuu采纳,获得10
4秒前
上官若男应助iuuu采纳,获得10
4秒前
LXY完成签到,获得积分10
4秒前
5秒前
5秒前
科研通AI6应助troubadourelf采纳,获得10
5秒前
6秒前
科研通AI6应助hswhswqkdh采纳,获得10
7秒前
10秒前
mia发布了新的文献求助10
10秒前
11秒前
Valars完成签到,获得积分10
11秒前
淡定乐天完成签到 ,获得积分10
11秒前
博闻发布了新的文献求助10
11秒前
rrrrrruuuuuuu完成签到,获得积分20
12秒前
领导范儿应助秀秀采纳,获得30
14秒前
14秒前
任性可冥完成签到,获得积分10
15秒前
崔雪峰发布了新的文献求助10
17秒前
zhuang完成签到,获得积分10
17秒前
万能图书馆应助M.采纳,获得10
18秒前
Yiping完成签到,获得积分20
18秒前
浮游应助yoyo112233采纳,获得10
18秒前
voifhpg完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
zzb完成签到,获得积分10
21秒前
21秒前
welcomeS发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
彭于晏应助huangchenxi采纳,获得10
24秒前
25秒前
李h完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914