A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions

计算机科学 Python(编程语言) 实施 图形 理论计算机科学 深度学习 人工智能 功率图分析 机器学习 数据科学 数据挖掘 软件工程 程序设计语言
作者
Bharti Khemani,Shruti Patil,Ketan Kotecha,Sudeep Tanwar
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:11 (1) 被引量:107
标识
DOI:10.1186/s40537-023-00876-4
摘要

Abstract Deep learning has seen significant growth recently and is now applied to a wide range of conventional use cases, including graphs. Graph data provides relational information between elements and is a standard data format for various machine learning and deep learning tasks. Models that can learn from such inputs are essential for working with graph data effectively. This paper identifies nodes and edges within specific applications, such as text, entities, and relations, to create graph structures. Different applications may require various graph neural network (GNN) models. GNNs facilitate the exchange of information between nodes in a graph, enabling them to understand dependencies within the nodes and edges. The paper delves into specific GNN models like graph convolution networks (GCNs), GraphSAGE, and graph attention networks (GATs), which are widely used in various applications today. It also discusses the message-passing mechanism employed by GNN models and examines the strengths and limitations of these models in different domains. Furthermore, the paper explores the diverse applications of GNNs, the datasets commonly used with them, and the Python libraries that support GNN models. It offers an extensive overview of the landscape of GNN research and its practical implementations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的手机完成签到,获得积分10
1秒前
1秒前
小雪完成签到,获得积分10
1秒前
姬欢欢完成签到 ,获得积分20
2秒前
3秒前
jenningseastera应助自由小然采纳,获得10
3秒前
3秒前
科研菜鸡完成签到,获得积分10
3秒前
小蘑菇应助稻草人采纳,获得10
4秒前
4秒前
斯文冷梅发布了新的文献求助10
4秒前
nickel发布了新的文献求助10
5秒前
科研小刘完成签到,获得积分10
5秒前
Lucas应助富婆莱莱采纳,获得10
5秒前
6秒前
tsytwn发布了新的文献求助10
7秒前
swkxwdh发布了新的文献求助10
9秒前
今后应助智海瑞采纳,获得10
9秒前
10秒前
芋泥丸丸完成签到,获得积分10
10秒前
姬欢欢发布了新的文献求助10
11秒前
小雪发布了新的文献求助20
12秒前
富婆莱莱完成签到,获得积分10
14秒前
tsytwn完成签到,获得积分10
14秒前
14秒前
yyyhhh发布了新的文献求助10
15秒前
Owen应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
华仔应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
17秒前
今后应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
18秒前
烟花应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847231
求助须知:如何正确求助?哪些是违规求助? 3389760
关于积分的说明 10558708
捐赠科研通 3110017
什么是DOI,文献DOI怎么找? 1714165
邀请新用户注册赠送积分活动 825107
科研通“疑难数据库(出版商)”最低求助积分说明 775255