Performance of Artificial Intelligence in Detecting Diabetic Macular Edema From Fundus Photography and Optical Coherence Tomography Images: A Systematic Review and Meta-analysis

光学相干层析成像 医学 接收机工作特性 人工智能 眼底摄影 荟萃分析 糖尿病性黄斑水肿 人口统计学的 眼科 机器学习 验光服务 糖尿病性视网膜病变 糖尿病 内科学 计算机科学 视力 内分泌学 社会学 人口学 荧光血管造影
作者
Ching Lam,Yiu Lun Wong,Ziqi Tang,Xiaoyan Hu,Truong Nguyen,Dawei Yang,Shuyi Zhang,Jie Ding,Simon Szeto,An Ran Ran,Carol Y. Cheung
出处
期刊:Diabetes Care [American Diabetes Association]
卷期号:47 (2): 304-319 被引量:13
标识
DOI:10.2337/dc23-0993
摘要

BACKGROUND Diabetic macular edema (DME) is the leading cause of vision loss in people with diabetes. Application of artificial intelligence (AI) in interpreting fundus photography (FP) and optical coherence tomography (OCT) images allows prompt detection and intervention. PURPOSE To evaluate the performance of AI in detecting DME from FP or OCT images and identify potential factors affecting model performances. DATA SOURCES We searched seven electronic libraries up to 12 February 2023. STUDY SELECTION We included studies using AI to detect DME from FP or OCT images. DATA EXTRACTION We extracted study characteristics and performance parameters. DATA SYNTHESIS Fifty-three studies were included in the meta-analysis. FP-based algorithms of 25 studies yielded pooled area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity of 0.964, 92.6%, and 91.1%, respectively. OCT-based algorithms of 28 studies yielded pooled AUROC, sensitivity, and specificity of 0.985, 95.9%, and 97.9%, respectively. Potential factors improving model performance included deep learning techniques, larger size, and more diversity in training data sets. Models demonstrated better performance when validated internally than externally, and those trained with multiple data sets showed better results upon external validation. LIMITATIONS Analyses were limited by unstandardized algorithm outcomes and insufficient data in patient demographics, OCT volumetric scans, and external validation. CONCLUSIONS This meta-analysis demonstrates satisfactory performance of AI in detecting DME from FP or OCT images. External validation is warranted for future studies to evaluate model generalizability. Further investigations may estimate optimal sample size, effect of class balance, patient demographics, and additional benefits of OCT volumetric scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃蔬菜发布了新的文献求助10
刚刚
李洋发布了新的文献求助10
刚刚
dgfhg完成签到,获得积分10
1秒前
2秒前
风趣的洙完成签到,获得积分10
2秒前
TobyGarfielD发布了新的文献求助10
3秒前
YONG完成签到,获得积分10
3秒前
土豪的如萱完成签到,获得积分10
4秒前
小二郎应助Aller采纳,获得20
5秒前
量子星尘发布了新的文献求助10
5秒前
zaza完成签到 ,获得积分10
5秒前
dxtmm发布了新的文献求助10
5秒前
PP完成签到 ,获得积分10
5秒前
5秒前
Fluoxtine完成签到,获得积分10
6秒前
7秒前
华仔应助张博雨采纳,获得10
7秒前
嘟嘟完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
黄菠萝完成签到,获得积分10
9秒前
三伏天完成签到,获得积分10
10秒前
10秒前
汉堡包应助bao采纳,获得10
10秒前
杨兴健发布了新的文献求助100
10秒前
杨tx关注了科研通微信公众号
11秒前
SciGPT应助肚子采纳,获得10
11秒前
Miracle完成签到,获得积分10
12秒前
鹿茸完成签到,获得积分10
13秒前
13秒前
慕青应助吗喽采纳,获得10
13秒前
13秒前
14秒前
ALDRC发布了新的文献求助10
14秒前
HamzaAnsari完成签到,获得积分10
14秒前
小张应助yezhi采纳,获得10
14秒前
th0357完成签到 ,获得积分10
14秒前
今后应助畅快尔烟采纳,获得10
15秒前
HC发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4838531
求助须知:如何正确求助?哪些是违规求助? 4141113
关于积分的说明 12819913
捐赠科研通 3886007
什么是DOI,文献DOI怎么找? 2136526
邀请新用户注册赠送积分活动 1156562
关于科研通互助平台的介绍 1056363