已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Filter Methods Comparation for Incremental Capacity Analysis in Lithium-Ion Batteries Health Prediction

锂(药物) 离子 滤波器(信号处理) 霍德里克-普雷斯科特过滤器 统计 计算机科学 环境科学 材料科学 数学 化学 医学 工程类 电气工程 内科学 经济 有机化学 凯恩斯经济学 商业周期
作者
Haishan Chen,Wenhui Yue,Guangfu Bin,Qi Jiang,Wei Shao,Chengqi She
标识
DOI:10.2139/ssrn.4807835
摘要

Accurate estimation of battery state of health (SOH) is crucial to ensure efficient, reliable, and safe operation of power battery systems in electric vehicles (EV) applications. The incremental capacity analysis (ICA) method is widely employed to evaluate battery SOH thanks to its non-invasive speciality. However, the inevitable error and noise in battery operation data hinder the acquirement of smooth incremental capacity (IC) curves and recognizable IC features, which is critical in the ICA method application. This paper systematically compares various filtering methods through a comprehensive scheme to choose an eligible filtering method for conducting the ICA method. Specifically, nine different filtering methods are carefully reviewed here, and the hyper-parameter selection process of compared filtering methods is analyzed in detail. Afterwards, a comprehensive comparison scheme is proposed among three aspects, correlation analysis, predictive accuracy and robustness, to examine the practicability and accuracy of IC curve filtering methods. After verifying through two public battery datasets, the robust Gaussian filtering (RGSF) shows superior performance than others in SOH estimation precision and robustness. Based on the Oxford and CALCE datasets, the predictive model for battery SOH, with the assistance of the RGSF method, can reduce the root-mean-square error by 10.37% and 5.29%, respectively. Finally, the RGSF is further utilized in the operation data for real-world EVs to assist in generating a smooth IC curve for investigating the capability of the RGSF in real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI6应助顺心凡之采纳,获得20
2秒前
恒星的恒心完成签到 ,获得积分10
4秒前
阿凯发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
9秒前
9秒前
端庄的石头完成签到 ,获得积分10
12秒前
搜集达人应助西奥采纳,获得10
12秒前
mz完成签到 ,获得积分10
14秒前
神勇的半莲完成签到,获得积分10
15秒前
倾城发布了新的文献求助10
17秒前
猪猪hero应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
不配.应助科研通管家采纳,获得100
19秒前
李健应助科研通管家采纳,获得10
19秒前
嘘_应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得50
19秒前
猪猪hero应助科研通管家采纳,获得10
19秒前
科研通AI5应助小趴蔡采纳,获得100
20秒前
21秒前
24秒前
dada发布了新的文献求助10
25秒前
又听风雨发布了新的文献求助10
25秒前
yyy关注了科研通微信公众号
26秒前
27秒前
28秒前
dengdengdeng发布了新的文献求助10
28秒前
小刚大王完成签到,获得积分10
29秒前
31秒前
31秒前
El发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850864
求助须知:如何正确求助?哪些是违规求助? 4149880
关于积分的说明 12855861
捐赠科研通 3897534
什么是DOI,文献DOI怎么找? 2142184
邀请新用户注册赠送积分活动 1161848
关于科研通互助平台的介绍 1061745