Cross-modal Retrieval with Noisy Correspondence via Consistency Refining and Mining

一致性(知识库) 计算机科学 假阳性悖论 稳健性(进化) 人工智能 过度拟合 情态动词 数据挖掘 模式识别(心理学) 自然语言处理 机器学习 人工神经网络 生物化学 基因 化学 高分子化学
作者
Xinran Ma,Mouxing Yang,Yunfan Li,Peng Hu,Jiancheng Lv,Xi Peng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2587-2598 被引量:5
标识
DOI:10.1109/tip.2024.3374221
摘要

The success of existing cross-modal retrieval (CMR) methods heavily rely on the assumption that the annotated cross-modal correspondence is faultless. In practice, however, the correspondence of some pairs would be inevitably contaminated during data collection or annotation, thus leading to the so-called Noisy Correspondence (NC) problem. To alleviate the influence of NC, we propose a novel method termed Consistency REfining And Mining (CREAM) by revealing and exploiting the difference between correspondence and consistency. Specifically, the correspondence and the consistency only be coincident for true positive and true negative pairs, while being distinct for false positive and false negative pairs. Based on the observation, CREAM employs a collaborative learning paradigm to detect and rectify the correspondence of positives, and a negative mining approach to explore and utilize the consistency. Thanks to the consistency refining and mining strategy of CREAM, the overfitting on the false positives could be prevented and the consistency rooted in the false negatives could be exploited, thus leading to a robust CMR method. Extensive experiments verify the effectiveness of our method on three image-text benchmarks including Flickr30K, MS-COCO, and Conceptual Captions. Furthermore, we adopt our method into the graph matching task and the results demonstrate the robustness of our method against fine-grained NC problem. The code is available on https://github.com/XLearning-SCU/2024-TIP-CREAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pzh完成签到 ,获得积分10
1秒前
qin完成签到,获得积分10
1秒前
1秒前
1秒前
3秒前
珂珂发布了新的文献求助10
5秒前
8秒前
洋洋洋完成签到,获得积分10
9秒前
jx完成签到,获得积分10
10秒前
10秒前
Owen应助查丽采纳,获得10
11秒前
赘婿应助高兴绿柳采纳,获得10
13秒前
KevenDing完成签到,获得积分10
13秒前
14秒前
16秒前
阿白完成签到 ,获得积分10
16秒前
Mae完成签到,获得积分20
16秒前
鲁西西发布了新的文献求助10
17秒前
李健的粉丝团团长应助BUG采纳,获得10
17秒前
一只西辞完成签到 ,获得积分10
17秒前
聪明的砖头完成签到,获得积分10
19秒前
19秒前
Mae发布了新的文献求助10
20秒前
22秒前
zhang完成签到,获得积分10
22秒前
坐等时光看轻自己完成签到,获得积分10
23秒前
一个正经人完成签到,获得积分10
23秒前
23秒前
hcw完成签到,获得积分20
24秒前
24秒前
28秒前
28秒前
善学以致用应助鲁西西采纳,获得10
30秒前
小曲完成签到 ,获得积分10
32秒前
langbuyu完成签到,获得积分10
33秒前
研友_ZG4ml8发布了新的文献求助10
33秒前
查丽发布了新的文献求助10
34秒前
COCO完成签到,获得积分10
35秒前
38秒前
guozizi发布了新的文献求助150
38秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4179876
求助须知:如何正确求助?哪些是违规求助? 3715302
关于积分的说明 11712847
捐赠科研通 3396159
什么是DOI,文献DOI怎么找? 1863330
邀请新用户注册赠送积分活动 921625
科研通“疑难数据库(出版商)”最低求助积分说明 833344