PBScaler: A Bottleneck-Aware Autoscaling Framework for Microservice-Based Applications

计算机科学 瓶颈 分布式计算 嵌入式系统
作者
Shuaiyu Xie,Jian Wang,Bing Li,Zekun Zhang,Duantengchuan Li,Patrick C. K. Hung
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:17 (2): 604-616 被引量:5
标识
DOI:10.1109/tsc.2024.3376202
摘要

Autoscaling is critical for ensuring optimal performance and resource utilization in cloud applications with dynamic workloads. However, traditional autoscaling technologies are typically no longer applicable in microservice-based applications due to the diverse workload patterns and complex interactions between microservices. Specifically, the propagation of performance anomalies through interactions leads to a high number of abnormal microservices, making it difficult to identify the root performance bottlenecks (PBs) and formulate appropriate scaling strategies. In addition, to balance resource consumption and performance, the existing mainstream approaches based on online optimization algorithms require multiple iterations, leading to oscillation and elevating the likelihood of performance degradation. To tackle these issues, we propose PBScaler, a bottleneck-aware autoscaling framework designed to prevent performance degradation in a microservice-based application. The key insight of PBScaler is to locate the PBs. Thus, we propose TopoRank, a novel random walk algorithm based on the topological potential to reduce unnecessary scaling. By integrating TopoRank with an offline performance-aware optimization algorithm, PBScaler optimizes replica management without disrupting the online application. Comprehensive experiments demonstrate that PBScaler outperforms existing state-of-the-art approaches in mitigating performance issues while conserving resources efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
RoyWong发布了新的文献求助10
刚刚
生菜发布了新的文献求助20
1秒前
1秒前
淡出发布了新的文献求助10
1秒前
天真的酒窝完成签到,获得积分10
2秒前
yzx发布了新的文献求助10
2秒前
ye先生完成签到,获得积分10
2秒前
松子完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助传统的柚子采纳,获得10
4秒前
乐乐应助大河向东刘先生采纳,获得10
4秒前
4秒前
二小发布了新的文献求助10
4秒前
xchi发布了新的文献求助30
4秒前
钮若翠发布了新的文献求助10
4秒前
科研通AI5应助刻苦丝袜采纳,获得10
4秒前
5秒前
5秒前
飘逸的飞丹完成签到 ,获得积分10
5秒前
5秒前
WELXCNK发布了新的文献求助10
5秒前
隐形的天问完成签到,获得积分10
6秒前
Lucas发布了新的文献求助10
6秒前
刘刘刘医生完成签到,获得积分10
8秒前
8秒前
小马甲应助懒洋洋采纳,获得10
8秒前
潜山耕之完成签到,获得积分10
9秒前
GIPCY完成签到 ,获得积分10
9秒前
9秒前
菜系发布了新的文献求助10
9秒前
zo发布了新的文献求助10
10秒前
李逸玄应助songsong采纳,获得10
10秒前
10秒前
11秒前
jiayou完成签到,获得积分10
12秒前
12秒前
稳重觅山关注了科研通微信公众号
12秒前
14秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832287
求助须知:如何正确求助?哪些是违规求助? 3374698
关于积分的说明 10485946
捐赠科研通 3094442
什么是DOI,文献DOI怎么找? 1703605
邀请新用户注册赠送积分活动 819491
科研通“疑难数据库(出版商)”最低求助积分说明 771587