Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization

元启发式 粒子群优化 算法 计算机科学 水准点(测量) 成对比较 原生动物 觅食 人工智能 数学优化 数学 生物 大地测量学 生态学 遗传学 地理
作者
Xiaopeng Wang,Václav Snåšel,Seyedali Mirjalili,Jeng‐Shyang Pan,Lingping Kong,Hisham A. Shehadeh
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:295: 111737-111737 被引量:44
标识
DOI:10.1016/j.knosys.2024.111737
摘要

This study proposes a novel artificial protozoa optimizer (APO) that is inspired by protozoa in nature. The APO mimics the survival mechanisms of protozoa by simulating their foraging, dormancy, and reproductive behaviors. The APO was mathematically modeled and implemented to perform the optimization processes of metaheuristic algorithms. The performance of the APO was verified via experimental simulations and compared with 32 state-of-the-art algorithms. Wilcoxon signed-rank test was performed for pairwise comparisons of the proposed APO with the state-of-the-art algorithms, and Friedman test was used for multiple comparisons. First, the APO was tested using 12 functions of the 2022 IEEE Congress on Evolutionary Computation benchmark. Considering practicality, the proposed APO was used to solve five popular engineering design problems in a continuous space with constraints. Moreover, the APO was applied to solve a multilevel image segmentation task in a discrete space with constraints. The experiments confirmed that the APO could provide highly competitive results for optimization problems. The source codes of Artificial Protozoa Optimizer are publicly available at https://seyedalimirjalili.com/projects and https://ww2.mathworks.cn/matlabcentral/fileexchange/162656-artificial-protozoa-optimizer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心的闭月完成签到,获得积分10
刚刚
雪白起眸发布了新的文献求助10
1秒前
xiao123789发布了新的文献求助10
1秒前
叶叶叶完成签到,获得积分10
1秒前
LHW完成签到,获得积分10
1秒前
1秒前
我是老大应助筱煜采纳,获得10
1秒前
田様应助摆渡人采纳,获得10
1秒前
奶茶菌发布了新的文献求助10
2秒前
2秒前
2秒前
LL发布了新的文献求助10
2秒前
科研通AI5应助傢誠采纳,获得10
3秒前
able完成签到 ,获得积分10
3秒前
3秒前
啦啦啦啦完成签到,获得积分20
4秒前
花生了什么树完成签到,获得积分10
6秒前
赘婿应助yeah采纳,获得10
6秒前
整齐醉冬发布了新的文献求助10
6秒前
WxChen发布了新的文献求助10
6秒前
甜甜宛海发布了新的文献求助10
6秒前
6秒前
7秒前
郭宇发布了新的文献求助10
7秒前
子南发布了新的文献求助30
8秒前
1111发布了新的文献求助10
8秒前
科研通AI2S应助木木采纳,获得10
9秒前
9秒前
大个应助喻踏歌采纳,获得10
9秒前
10秒前
10秒前
11秒前
NexusExplorer应助肖耶啵采纳,获得10
11秒前
NexusExplorer应助研友_yLpYkn采纳,获得30
11秒前
12秒前
12秒前
嵇灵竹完成签到,获得积分10
12秒前
13秒前
星辰大海应助辛勤太阳采纳,获得10
13秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813459
求助须知:如何正确求助?哪些是违规求助? 3357801
关于积分的说明 10388583
捐赠科研通 3075042
什么是DOI,文献DOI怎么找? 1689136
邀请新用户注册赠送积分活动 812578
科研通“疑难数据库(出版商)”最低求助积分说明 767210