Large-area regular periodic surface structures on 4H-SiC induced by defocused femtosecond laser

激光器 飞秒 材料科学 光学 纳米结构 涟漪 碳化硅 光电子学 纳米技术 复合材料 物理 量子力学 电压
作者
Ziyu He,Xiaozhu Xie,Jiangyou Long,Tao Liu,Zucheng Zhang,Qing Lai
出处
期刊:Semiconductor Science and Technology [IOP Publishing]
卷期号:37 (9): 095005-095005 被引量:5
标识
DOI:10.1088/1361-6641/ac81e6
摘要

Abstract Femtosecond (fs) laser has been proved to induce periodic surface structure formation with various periods. Previous studies employed complex optical means and specific processing environments to induce nano-sized periodic surface structures. In this study, a defocused fs laser was utilized to realize a high-stability and straightforward method for generating periodic structures on silicon carbide (SiC) surfaces. Due to its more uniform energy distribution, the defocused laser effectively attenuates the unstable fluid flow caused by the Marangoni convection, thereby improving the consistency of laser- induced periodic surface structure morphology and size. The effects of laser processing parameters on the ripple period, density, and morphology were systematically investigated. Moreover, an appropriate physical process was adopted to explain the formation of the nanostructures. A high laser pulse number was considered the key to forming large-area dense nanoripples, which possessed a smooth edge profile and similar period. Under optimal parameters, large-area regular nanoripples with periods of ∼100 nm could be induced on the SiC surface by a defocused fs laser method. Meanwhile, a two-step laser-inducing method was proposed to fabricate an array of two-dimensional square-shaped nanocolumns with a size of 60 nm × 60 nm. The two-step laser-inducing method realized tuning in the surface nanostructure morphology and localized nanostructures rewriting by adjusting the laser processing parameters. This large-area periodic structure inducing method showed the possibility of making laser-writing technology to be flexible, straightforward and, hence, competitive for advanced industrial application based on surface nanostructuring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐大王完成签到,获得积分10
1秒前
Wvzzzzz完成签到,获得积分10
1秒前
苹果追命完成签到,获得积分10
1秒前
邵邵发布了新的文献求助10
1秒前
Guochunbao发布了新的文献求助20
1秒前
lgold完成签到,获得积分10
1秒前
nicholas完成签到,获得积分10
2秒前
顾矜应助dty采纳,获得10
2秒前
钴酸锂完成签到,获得积分10
2秒前
2秒前
幸福果汁完成签到,获得积分10
2秒前
2秒前
simon发布了新的文献求助10
2秒前
浮游应助生动手机采纳,获得10
3秒前
友好的绮彤完成签到,获得积分10
3秒前
ray完成签到,获得积分10
3秒前
lcy完成签到,获得积分10
4秒前
Anna完成签到,获得积分10
4秒前
4秒前
4秒前
HuaqingLiu完成签到,获得积分10
5秒前
鱼人完成签到,获得积分10
5秒前
星辰大海应助竹1采纳,获得10
5秒前
共享精神应助大方的太君采纳,获得10
6秒前
洪艳完成签到 ,获得积分10
7秒前
鬼笔环肽发布了新的文献求助10
7秒前
7秒前
8秒前
小二郎应助孙朱珠采纳,获得10
8秒前
8秒前
8秒前
9秒前
彭于彦祖应助余生采纳,获得30
9秒前
Lyue完成签到,获得积分10
9秒前
10秒前
徐徐完成签到 ,获得积分10
10秒前
yangcong发布了新的文献求助10
11秒前
11秒前
柴柴发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4743871
求助须知:如何正确求助?哪些是违规求助? 4092891
关于积分的说明 12661458
捐赠科研通 3804041
什么是DOI,文献DOI怎么找? 2100170
邀请新用户注册赠送积分活动 1125599
关于科研通互助平台的介绍 1001924