Abstract Mitochondria, which evolved from symbiotic bacteria, possess their own genomes (mtDNA) and support independent transcription and translation within the organelle. Given the essential role of mtDNA in energy production, metabolism, as well as cellular homeostasis, and the high density of confirmed pathogenic mutations that map to mtDNA, there is a pressing need for versatile methods to study and manipulate this genome. Although CRISPR technology has revolutionized the editing of nuclear genomes, it has not been successfully extended to mtDNA, primarily due to the challenge of delivering single guide RNAs (sgRNAs) across both outer and inner mitochondrial membranes. Here we develop a survival-based reporter in Saccharomyces cerevisiae to screen for potential RNA import motifs. We identify a 40-nucleotide aptamer (IM83) that facilitates sgRNA entry into the mitochondrial matrix, enabling CRISPR editing by a mitochondrially-localized adenine base editor. We show that mitochondrial import of IM83 is ATP-dependent and enhanced by the tRNA synthetase Msk1. Further investigations identify barriers to efficient CRISPR editing of mtDNA, including loss of membrane potential associated with mitochondrial targeting of the base editor. These insights lay the groundwork for future improvements in CRISPR-based editing of mtDNA in eukaryotes.