已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Overcoming the Barrier of Incompleteness: A Hyperspectral Image Classification Full Model

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 机器学习 上下文图像分类 高光谱成像 语义学(计算机科学) 图形 特征(语言学) 数据挖掘 图像(数学) 理论计算机科学 语言学 哲学 程序设计语言
作者
Jiaqi Yang,Bo Du,Liangpei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14467-14481 被引量:10
标识
DOI:10.1109/tnnls.2023.3279377
摘要

Deep learning-based methods have shown promising outcomes in many fields. However, the performance gain is always limited to a large extent in classifying hyperspectral image (HSI). We discover that the reason behind this phenomenon lies in the incomplete classification of HSI, i.e., existing works only focus on a certain stage that contributes to the classification, while ignoring other equally or even more significant phases. To address the above issue, we creatively put forward three elements needed for complete classification: the extensive exploration of available features, adequate reuse of representative features, and differential fusion of multidomain features. To the best of our knowledge, these three elements are being established for the first time, providing a fresh perspective on designing HSI-tailored models. On this basis, an HSI classification full model (HSIC-FM) is proposed to overcome the barrier of incompleteness. Specifically, a recurrent transformer corresponding to Element 1 is presented to comprehensively extract short-term details and long-term semantics for local-to-global geographical representation. Afterward, a feature reuse strategy matching Element 2 is designed to sufficiently recycle valuable information aimed at refined classification using few annotations. Eventually, a discriminant optimization is formulized in accordance with Element 3 to distinctly integrate multidomain features for the purpose of constraining the contribution of different domains. Numerous experiments on four datasets at small-, medium-, and large-scale demonstrate that the proposed method outperforms the state-of-the-art (SOTA) methods, such as convolutional neural network (CNN)-, fully convolutional network (FCN)-, recurrent neural network (RNN)-, graph convolutional network (GCN)-, and transformer-based models (e.g., accuracy improvement of more than 9% with only five training samples per class). The code will be available soon at https://github.com/jqyang22/ HSIC-FM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
win完成签到 ,获得积分10
刚刚
乐乐应助wangli采纳,获得10
1秒前
开心惜梦完成签到,获得积分10
2秒前
害怕的代亦完成签到 ,获得积分10
5秒前
6秒前
7秒前
完美世界应助害怕的板凳采纳,获得10
7秒前
GGGrigor完成签到,获得积分10
8秒前
空白格完成签到 ,获得积分10
9秒前
12秒前
DI完成签到 ,获得积分10
12秒前
13秒前
17秒前
17秒前
健忘无颜发布了新的文献求助10
17秒前
17秒前
DI关注了科研通微信公众号
17秒前
l0000完成签到,获得积分10
18秒前
故意的鞋垫完成签到 ,获得积分10
21秒前
迅捷海狸完成签到 ,获得积分20
22秒前
动人的向松完成签到 ,获得积分10
22秒前
wangli发布了新的文献求助10
22秒前
zheng发布了新的文献求助10
22秒前
26秒前
Criminology34完成签到,获得积分0
27秒前
健忘无颜完成签到,获得积分10
28秒前
在水一方应助干净的时光采纳,获得10
29秒前
小兔子乖乖完成签到 ,获得积分10
29秒前
宋宋不迷糊完成签到 ,获得积分10
34秒前
35秒前
35秒前
001026Z完成签到,获得积分10
35秒前
nPgA2o应助科研通管家采纳,获得10
35秒前
BowieHuang应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
BowieHuang应助科研通管家采纳,获得10
36秒前
852应助科研通管家采纳,获得10
36秒前
36秒前
37秒前
hbu123完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542978
求助须知:如何正确求助?哪些是违规求助? 4629095
关于积分的说明 14610815
捐赠科研通 4570377
什么是DOI,文献DOI怎么找? 2505716
邀请新用户注册赠送积分活动 1483039
关于科研通互助平台的介绍 1454361