已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Overcoming the Barrier of Incompleteness: A Hyperspectral Image Classification Full Model

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 机器学习 上下文图像分类 高光谱成像 语义学(计算机科学) 图形 特征(语言学) 数据挖掘 图像(数学) 理论计算机科学 语言学 哲学 程序设计语言
作者
Jiaqi Yang,Bo Du,Liangpei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14467-14481 被引量:10
标识
DOI:10.1109/tnnls.2023.3279377
摘要

Deep learning-based methods have shown promising outcomes in many fields. However, the performance gain is always limited to a large extent in classifying hyperspectral image (HSI). We discover that the reason behind this phenomenon lies in the incomplete classification of HSI, i.e., existing works only focus on a certain stage that contributes to the classification, while ignoring other equally or even more significant phases. To address the above issue, we creatively put forward three elements needed for complete classification: the extensive exploration of available features, adequate reuse of representative features, and differential fusion of multidomain features. To the best of our knowledge, these three elements are being established for the first time, providing a fresh perspective on designing HSI-tailored models. On this basis, an HSI classification full model (HSIC-FM) is proposed to overcome the barrier of incompleteness. Specifically, a recurrent transformer corresponding to Element 1 is presented to comprehensively extract short-term details and long-term semantics for local-to-global geographical representation. Afterward, a feature reuse strategy matching Element 2 is designed to sufficiently recycle valuable information aimed at refined classification using few annotations. Eventually, a discriminant optimization is formulized in accordance with Element 3 to distinctly integrate multidomain features for the purpose of constraining the contribution of different domains. Numerous experiments on four datasets at small-, medium-, and large-scale demonstrate that the proposed method outperforms the state-of-the-art (SOTA) methods, such as convolutional neural network (CNN)-, fully convolutional network (FCN)-, recurrent neural network (RNN)-, graph convolutional network (GCN)-, and transformer-based models (e.g., accuracy improvement of more than 9% with only five training samples per class). The code will be available soon at https://github.com/jqyang22/ HSIC-FM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tracy发布了新的文献求助10
1秒前
材料打工人完成签到 ,获得积分10
3秒前
谷安发布了新的文献求助30
3秒前
4秒前
SunGuoping发布了新的文献求助10
4秒前
4秒前
陈艾完成签到,获得积分20
6秒前
桃子完成签到,获得积分10
10秒前
今天别生气完成签到,获得积分10
11秒前
11秒前
高贵的冰旋完成签到 ,获得积分10
12秒前
皮球完成签到,获得积分10
12秒前
英姑应助yjj采纳,获得10
12秒前
13秒前
菁菁业业完成签到,获得积分10
14秒前
科研通AI6应助YueYue采纳,获得10
15秒前
15秒前
佚名发布了新的文献求助10
16秒前
高高的采蓝完成签到,获得积分20
17秒前
18秒前
彭于晏应助zimo采纳,获得10
18秒前
潜心如水发布了新的文献求助10
18秒前
20秒前
23秒前
ROSA完成签到,获得积分10
23秒前
yjj发布了新的文献求助10
23秒前
wanci应助小斌采纳,获得10
25秒前
无花果应助ZH的天方夜谭采纳,获得10
25秒前
YueYue完成签到,获得积分10
26秒前
Akim应助龚贤亮采纳,获得10
27秒前
27秒前
赖赖发布了新的文献求助10
32秒前
34秒前
万能图书馆应助mujinxin采纳,获得10
35秒前
从容芮应助爱吃卷饼采纳,获得50
36秒前
36秒前
李健应助蜂鸟5156采纳,获得10
37秒前
38秒前
yjj完成签到,获得积分10
38秒前
元问晴完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957586
求助须知:如何正确求助?哪些是违规求助? 4218964
关于积分的说明 13132165
捐赠科研通 4001830
什么是DOI,文献DOI怎么找? 2190033
邀请新用户注册赠送积分活动 1204936
关于科研通互助平台的介绍 1116538