A deep multi-agent reinforcement learning approach to solve dynamic job shop scheduling problem

强化学习 计算机科学 动态优先级调度 调度(生产过程) 两级调度 公平份额计划 流水车间调度 单调速率调度 分布式计算 作业车间调度 固定优先级先发制人调度 人工智能 工业工程 数学优化 计算机网络 工程类 服务质量 数学 布线(电子设计自动化)
作者
Renke Liu,Rajesh Piplani,Carlos Toro
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:159: 106294-106294 被引量:33
标识
DOI:10.1016/j.cor.2023.106294
摘要

Manufacturing industry is experiencing a revolution in the creation and utilization of data, the abundance of industrial data creates a need for data-driven techniques to implement real-time production scheduling. However, existing dynamic scheduling techniques have been mainly developed to solve problems of invariable size, and are incapable of addressing the increasing volatility and complexity of practical production scheduling problems. To facilitate near real-time decision-making on the shop floor, we propose a deep multi-agent reinforcement learning-based approach to solve the dynamic job shop scheduling problem. Double deep Q-network algorithm, attached to decentralized scheduling agents, is used to learn the relationships between production information and scheduling objectives, and to make near real-time scheduling decisions. Proposed framework utilizes centralized training and decentralized execution scheme and parameter-sharing technique to tackle the non-stationary problem in the multi-agent reinforcement learning task. Several enhancements are also developed, including the novel state and action representation that can handle size-agnostic dynamic scheduling problems, a chronological joint-action framework to alleviate the credit-assignment difficulty, and knowledge-based reward-shaping techniques to encourage cooperation. Simulation study shows that the proposed architecture significantly improves the learning effectiveness, and delivers superior performance compared to existing scheduling strategies and state-of-the-art deep reinforcement learning-based dynamic scheduling approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丽莫莫完成签到,获得积分10
1秒前
ljs发布了新的文献求助10
2秒前
博修发布了新的文献求助10
2秒前
Mercury完成签到 ,获得积分10
2秒前
2秒前
平常的毛豆应助wangjue采纳,获得10
3秒前
我不看月亮完成签到,获得积分10
4秒前
一秒的剧情完成签到,获得积分10
4秒前
5秒前
黄橙子发布了新的文献求助10
5秒前
5秒前
libaibai完成签到 ,获得积分10
8秒前
wise111发布了新的文献求助10
8秒前
细腻问柳完成签到,获得积分10
9秒前
JIANG发布了新的文献求助10
9秒前
Suge完成签到,获得积分10
10秒前
Q_Q完成签到,获得积分10
12秒前
12秒前
段皖顺完成签到 ,获得积分10
13秒前
wangjue完成签到,获得积分10
14秒前
14秒前
15秒前
tomato发布了新的文献求助10
17秒前
Mason完成签到,获得积分10
18秒前
在水一方应助zhang采纳,获得10
19秒前
花开不败发布了新的文献求助10
20秒前
zhu完成签到,获得积分10
23秒前
23秒前
26秒前
茶包完成签到,获得积分10
26秒前
小杨发布了新的文献求助10
28秒前
科研通AI2S应助keyan采纳,获得10
29秒前
JIANG完成签到,获得积分10
30秒前
30秒前
tomato完成签到,获得积分10
30秒前
念与惜发布了新的文献求助10
31秒前
33秒前
Huajing_Yang发布了新的文献求助10
34秒前
传奇3应助大大杰采纳,获得10
34秒前
35秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799173
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321997
捐赠科研通 3061303
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445