光电子学
光伏
材料科学
量子阱
金属有机气相外延
光伏系统
外延
能量转换效率
分布式布拉格反射镜
吸收(声学)
激子
光学
纳米技术
激光器
物理
波长
电气工程
复合材料
工程类
量子力学
图层(电子)
作者
Stephen J. Polly,Brandon Bogner,Anastasiia Fedorenko,Nikhil Pokharel,Phil Ahrenkiel,Subhra Chowdhury,Dhrubes Biswas,Seth M. Hubbard
标识
DOI:10.1016/j.xcrp.2023.101432
摘要
III-V materials enable the highest reported power conversion efficiency of any photovoltaic technology. The incorporation of high-quality nanostructures can tailor absorption to the available solar spectrum, allowing a further performance increase. Here we report a comprehensive study of the growth conditions of strain-balanced InGaAs quantum wells (QWs) incorporated into multijunction III-V photovoltaics by metalorganic vapor phase epitaxy (MOVPE). The fundamental growth mechanism leading to detrimental step-edge bunching in these devices is presented. Methods for mitigating step bunching through the composition of strain-balancing layers, growth temperature, and substrate offcut are shown. The addition of a distributed Bragg reflector, optically matched to the QW absorption region, extends the optical path of QWs, further increasing current generation to over 40 μA/cm2/QW. Results show a clear direction to mitigate voltage loss, enhance carrier collection, and lead to an impressive performance of 27.5% AM0 and 30.3% AM1.5G, two-junction QW solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI