Foundation Models Defining a New Era in Vision: A Survey and Outlook

基础(证据) 人工智能 计算机科学 可解释性 模式 人机交互 领域(数学) 视觉科学 视觉推理 标杆管理 数据科学 机器学习 自然语言处理 考古 数学 纯数学 营销 社会科学 业务 社会学 历史
作者
Muhammad Awais,Muzammal Naseer,Salman Khan,Rao Muhammad Anwer,Hisham Cholakkal,Mubarak Shah,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (4): 2245-2264 被引量:82
标识
DOI:10.1109/tpami.2024.3506283
摘要

Vision systems that see and reason about the compositional nature of visual scenes are fundamental to understanding our world. The complex relations between objects and their locations, ambiguities, and variations in the real-world environment can be better described in human language, naturally governed by grammatical rules and other modalities such as audio and depth. The models learned to bridge the gap between such modalities and large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time. These models are referred to as foundation models. The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions. In this survey, we provide a comprehensive review of such emerging foundation models, including typical architecture designs to combine different modalities (vision, text, audio, etc.), training objectives (contrastive, generative), pre-training datasets, fine-tuning mechanisms, and the common prompting patterns; textual, visual, and heterogeneous. We discuss the open challenges and research directions for foundation models in computer vision, including difficulties in their evaluations and benchmarking, gaps in their real-world understanding, limitations of contextual understanding, biases, vulnerability to adversarial attacks, and interpretability issues. We review recent developments in this field, covering a wide range of applications of foundation models systematically and comprehensively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的静丹完成签到,获得积分10
刚刚
黄浩发布了新的文献求助20
刚刚
刚刚
1秒前
王潇怡发布了新的文献求助10
2秒前
2秒前
西啃发布了新的文献求助10
2秒前
2秒前
花生了什么树完成签到,获得积分10
3秒前
wcx完成签到,获得积分10
3秒前
3秒前
业伟发布了新的文献求助10
3秒前
3秒前
奋斗的凡完成签到,获得积分10
4秒前
4秒前
追寻的安南完成签到,获得积分10
4秒前
4秒前
5秒前
successful完成签到,获得积分10
5秒前
九月发布了新的文献求助20
5秒前
O_O完成签到 ,获得积分10
6秒前
6秒前
刘嘉欣完成签到,获得积分10
6秒前
moodbigboom发布了新的文献求助10
6秒前
KK完成签到,获得积分10
6秒前
小蘑菇应助牛马采纳,获得10
6秒前
司空元正发布了新的文献求助10
7秒前
7秒前
泡泡发布了新的文献求助10
8秒前
8秒前
子车茗应助囧囧采纳,获得30
8秒前
李爱国应助必有重逢之日采纳,获得30
8秒前
奋斗的凡发布了新的文献求助10
8秒前
参商完成签到 ,获得积分10
8秒前
9秒前
西啃发布了新的文献求助10
9秒前
伽娜发布了新的文献求助10
9秒前
大强发布了新的文献求助10
9秒前
复杂真发布了新的文献求助80
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427755
求助须知:如何正确求助?哪些是违规求助? 4541634
关于积分的说明 14177771
捐赠科研通 4459194
什么是DOI,文献DOI怎么找? 2445264
邀请新用户注册赠送积分活动 1436456
关于科研通互助平台的介绍 1413797