Foundation Models Defining a New Era in Vision: a Survey and Outlook

基础(证据) 人工智能 计算机科学 可解释性 模式 人机交互 领域(数学) 视觉科学 视觉推理 标杆管理 数据科学 机器学习 自然语言处理 社会科学 数学 考古 营销 社会学 纯数学 业务 历史
作者
Muhammad Awais,Muzammal Naseer,Salman Khan,Rao Muhammad Anwer,Hisham Cholakkal,Mubarak Shah,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-20 被引量:3
标识
DOI:10.1109/tpami.2024.3506283
摘要

Vision systems that see and reason about the compositional nature of visual scenes are fundamental to understanding our world. The complex relations between objects and their locations, ambiguities, and variations in the real-world environment can be better described in human language, naturally governed by grammatical rules and other modalities such as audio and depth. The models learned to bridge the gap between such modalities and large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time. These models are referred to as foundation models. The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions. In this survey, we provide a comprehensive review of such emerging foundation models, including typical architecture designs to combine different modalities (vision, text, audio, etc.), training objectives (contrastive, generative), pre-training datasets, fine-tuning mechanisms, and the common prompting patterns; textual, visual, and heterogeneous. We discuss the open challenges and research directions for foundation models in computer vision, including difficulties in their evaluations and benchmarking, gaps in their real-world understanding, limitations of contextual understanding, biases, vulnerability to adversarial attacks, and interpretability issues. We review recent developments in this field, covering a wide range of applications of foundation models systematically and comprehensively. A comprehensive list of foundation models studied in this work is available at https://github.com/awaisrauf/Awesome-CV-Foundational-Models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
精明外套发布了新的文献求助10
1秒前
飞快的珩发布了新的文献求助10
2秒前
2秒前
搞科研的崔桑完成签到,获得积分10
4秒前
5秒前
5秒前
一一发布了新的文献求助10
6秒前
科研通AI5应助橘子味的风采纳,获得10
8秒前
啵啵洋发布了新的文献求助10
9秒前
9秒前
精明外套完成签到,获得积分10
10秒前
鱼鱼鱼发布了新的文献求助10
11秒前
12秒前
12秒前
亦舒发布了新的文献求助10
13秒前
Sunshine完成签到,获得积分10
13秒前
缥缈的丹翠关注了科研通微信公众号
14秒前
科研通AI5应助大恩区采纳,获得10
14秒前
15秒前
Owen应助WWW采纳,获得10
16秒前
大小宇完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
风起完成签到,获得积分10
17秒前
17秒前
17秒前
赘婿应助莫比乌斯采纳,获得10
17秒前
Akim应助萧衍采纳,获得10
18秒前
18秒前
yuiii完成签到,获得积分10
18秒前
19秒前
19秒前
华仔应助MXX采纳,获得10
21秒前
风起发布了新的文献求助10
21秒前
搞怪冷风发布了新的文献求助10
21秒前
小小铱发布了新的文献求助10
21秒前
22秒前
22秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462