Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence

计算机科学 人工智能 深度学习 无线电技术 磁共振成像 医学影像学 机器学习 医学 放射科
作者
Ben Y. Zhao,Buyue Cao,Tianyi Xia,Liwen Zhu,Yaoyao Yu,Chun‐Qiang Lu,Tianyu Tang,Yuancheng Wang,Ying Cui
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:3
标识
DOI:10.1002/jmri.29708
摘要

Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5‐year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second‐leading cause of cancer‐related death. The radiological assessment determined the stage and management of PDAC. However, it is a highly heterogeneous disease with the complexity of the tumor microenvironment, and it is challenging to adequately reflect the biological aggressiveness and prognosis accurately through morphological evaluation alone. With the dramatic development of artificial intelligence (AI), multiparametric magnetic resonance imaging (mpMRI) using specific contrast media and special techniques can provide morphological and functional information with high image quality and become a powerful tool in quantifying intratumor characteristics. Besides, AI has been widespread in the field of medical imaging analysis. Radiomics is the high‐throughput mining of quantitative image features from medical imaging that enables data to be extracted and applied for better decision support. Deep learning is a subset of artificial neural network algorithms that can automatically learn feature representations from data. AI‐enabled imaging biomarkers of mpMRI have enormous promise to bridge the gap between medical imaging and personalized medicine and demonstrate huge advantages in predicting biological characteristics and the prognosis of PDAC. However, current AI‐based models of PDAC operate mainly in the realm of a single modality with a relatively small sample size, and the technical reproducibility and biological interpretation present a barrage of new potential challenges. In the future, the integration of multi‐omics data, such as radiomics and genomics, alongside the establishment of standardized analytical frameworks will provide opportunities to increase the robustness and interpretability of AI‐enabled image biomarkers and bring these biomarkers closer to clinical practice. Evidence Level 3 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助读书的时候采纳,获得10
2秒前
7秒前
xdc完成签到,获得积分10
7秒前
8秒前
9秒前
Hashirma发布了新的文献求助10
11秒前
shen完成签到,获得积分10
11秒前
京阿尼发布了新的文献求助10
13秒前
14秒前
李春晓发布了新的文献求助10
15秒前
15秒前
翟蓬勃发布了新的文献求助10
15秒前
等待蚂蚁完成签到 ,获得积分10
16秒前
奇拉维特完成签到 ,获得积分10
16秒前
17857314636发布了新的文献求助10
18秒前
mmx发布了新的文献求助10
18秒前
SC完成签到,获得积分10
19秒前
酷波er应助yongzaizhuigan采纳,获得10
20秒前
20秒前
21秒前
dollydeng完成签到,获得积分10
23秒前
24秒前
kk99123应助廖少跑不快采纳,获得10
24秒前
25秒前
25秒前
27秒前
京阿尼完成签到,获得积分10
27秒前
29秒前
29秒前
晴朗发布了新的文献求助10
30秒前
30秒前
lixueao发布了新的文献求助10
30秒前
四季风发布了新的文献求助10
31秒前
彭于晏应助Hashirma采纳,获得10
31秒前
研友_8y2G0L发布了新的文献求助10
32秒前
32秒前
whq531608发布了新的文献求助10
33秒前
ljssll完成签到,获得积分10
33秒前
顾矜应助17857314636采纳,获得10
36秒前
酷炫雁梅发布了新的文献求助10
37秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084113
求助须知:如何正确求助?哪些是违规求助? 3623230
关于积分的说明 11493787
捐赠科研通 3337754
什么是DOI,文献DOI怎么找? 1835001
邀请新用户注册赠送积分活动 903663
科研通“疑难数据库(出版商)”最低求助积分说明 821776