Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence

计算机科学 人工智能 深度学习 无线电技术 磁共振成像 医学影像学 机器学习 医学 放射科
作者
Ben Y. Zhao,Buyue Cao,Tianyi Xia,Liwen Zhu,Yaoyao Yu,Chun‐Qiang Lu,Tianyu Tang,Yuancheng Wang,Ying Cui
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29708
摘要

Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5‐year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second‐leading cause of cancer‐related death. The radiological assessment determined the stage and management of PDAC. However, it is a highly heterogeneous disease with the complexity of the tumor microenvironment, and it is challenging to adequately reflect the biological aggressiveness and prognosis accurately through morphological evaluation alone. With the dramatic development of artificial intelligence (AI), multiparametric magnetic resonance imaging (mpMRI) using specific contrast media and special techniques can provide morphological and functional information with high image quality and become a powerful tool in quantifying intratumor characteristics. Besides, AI has been widespread in the field of medical imaging analysis. Radiomics is the high‐throughput mining of quantitative image features from medical imaging that enables data to be extracted and applied for better decision support. Deep learning is a subset of artificial neural network algorithms that can automatically learn feature representations from data. AI‐enabled imaging biomarkers of mpMRI have enormous promise to bridge the gap between medical imaging and personalized medicine and demonstrate huge advantages in predicting biological characteristics and the prognosis of PDAC. However, current AI‐based models of PDAC operate mainly in the realm of a single modality with a relatively small sample size, and the technical reproducibility and biological interpretation present a barrage of new potential challenges. In the future, the integration of multi‐omics data, such as radiomics and genomics, alongside the establishment of standardized analytical frameworks will provide opportunities to increase the robustness and interpretability of AI‐enabled image biomarkers and bring these biomarkers closer to clinical practice. Evidence Level 3 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xxx7749发布了新的文献求助10
3秒前
在水一方应助称心寒松采纳,获得10
3秒前
kk发布了新的文献求助10
4秒前
4秒前
6秒前
ssz发布了新的文献求助10
10秒前
kk完成签到,获得积分10
10秒前
暮沐晓光完成签到,获得积分10
11秒前
北风应助虾米采纳,获得10
12秒前
朝闻道完成签到 ,获得积分10
14秒前
潘贤铖关注了科研通微信公众号
15秒前
16秒前
愉快天亦完成签到,获得积分10
20秒前
20秒前
羊白筠发布了新的文献求助10
21秒前
qiao应助xxx7749采纳,获得10
23秒前
yuaner发布了新的文献求助10
24秒前
25秒前
pluto应助李向东采纳,获得50
25秒前
称心寒松发布了新的文献求助10
30秒前
哭泣的赛凤完成签到 ,获得积分10
32秒前
毕业完成签到,获得积分10
36秒前
40秒前
lqqq完成签到 ,获得积分10
42秒前
学术智子完成签到,获得积分10
43秒前
45秒前
sky完成签到 ,获得积分10
45秒前
腼腆的恶天完成签到,获得积分10
45秒前
隐形傲霜完成签到 ,获得积分10
45秒前
47秒前
48秒前
49秒前
CodeCraft应助jinzhen采纳,获得10
51秒前
北风应助称心寒松采纳,获得10
52秒前
zzzzz发布了新的文献求助10
54秒前
玛卡巴卡完成签到 ,获得积分10
56秒前
57秒前
57秒前
英俊的铭应助Asuna采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781313
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228480
捐赠科研通 3041848
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751