Predictive value of preclinical models for CAR-T cell therapy clinical trials: a systematic review and meta-analysis

荟萃分析 预测值 医学 临床试验 价值(数学) 系统回顾 梅德林 计算机科学 内科学 生物 机器学习 生物化学
作者
David Andreu-Sanz,Lisa Gregor,Emanuele Carlini,Daniele Scarcella,Carsten Marr,Sebastian Kobold
标识
DOI:10.1101/2024.12.15.628103
摘要

Abstract Experimental mouse models are indispensable for the preclinical development of cancer immunotherapies, whereby complex interactions in the tumor microenvironment (TME) can be somewhat replicated. Despite the availability of diverse models, their predictive capacity for clinical outcomes remains largely unknown, posing a hurdle in the translation from preclinical to clinical success. This study systematically reviews and meta-analyzes clinical trials of chimeric antigen receptor (CAR-) T cell monotherapies with their corresponding preclinical studies. Adhering to PRISMA guidelines, a comprehensive search of PubMed and ClinicalTrials.gov was conducted, identifying 422 clinical trials and 3157 preclinical studies. From these, 105 clinical trials and 180 preclinical studies, accounting for 44 and 131 distinct CAR constructs, respectively, were included. Patientś responses varied based on the target antigen, expectedly with higher efficacy and toxicity rates in hematological cancers. Preclinical data analysis revealed homogenous and antigen-independent efficacy rates. Our analysis revealed that only 4 % (n = 12) of mouse studies used syngeneic models, highlighting their scarcity in research. Three logistic regression models were trained on CAR structures, tumor entities, and experimental settings to predict treatment outcomes. While the logistic regression model accurately predicted clinical outcomes based on clinical or preclinical features (Macro F1 and AUC > 0.8), it failed in predicting preclinical outcomes from preclinical features (Macro F1 < 0.5, AUC < 0.6), indicating that preclinical studies may be influenced by experimental factors not accounted for in the model. These findings underscore the need for better understanding the experimental factors enhancing the predictive accuracy of mouse models in preclinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vv完成签到,获得积分20
1秒前
美式不加糖bjt完成签到,获得积分20
2秒前
Jasper应助番茄酱采纳,获得10
2秒前
2秒前
3秒前
汤汤发布了新的文献求助10
4秒前
5秒前
7秒前
bxhcs发布了新的文献求助10
8秒前
ANG完成签到 ,获得积分10
8秒前
科研通AI6应助魏恒胜采纳,获得30
9秒前
9秒前
sunwei发布了新的文献求助10
9秒前
9秒前
chenjun7080完成签到,获得积分10
9秒前
5_羟色胺发布了新的文献求助10
10秒前
CipherSage应助结实星星采纳,获得10
11秒前
11秒前
隐形元绿发布了新的文献求助10
12秒前
科研通AI2S应助结实星星采纳,获得10
14秒前
田鸿平发布了新的文献求助10
14秒前
奋斗的冷卉完成签到,获得积分10
15秒前
瓦洛佳小神完成签到,获得积分10
15秒前
17秒前
17秒前
17秒前
小张医生完成签到,获得积分10
17秒前
18秒前
wen完成签到,获得积分10
19秒前
20秒前
王明磊完成签到 ,获得积分10
20秒前
20秒前
Tada完成签到,获得积分10
20秒前
浮游应助fj采纳,获得10
21秒前
HITvagary完成签到,获得积分10
21秒前
11发布了新的文献求助10
22秒前
QY完成签到,获得积分10
23秒前
23秒前
Akim应助第七个星球采纳,获得10
23秒前
852应助English4869采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565910
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693820
捐赠科研通 4592971
什么是DOI,文献DOI怎么找? 2519822
邀请新用户注册赠送积分活动 1492187
关于科研通互助平台的介绍 1463382