Maize COMPACT PLANT 3 regulates plant architecture and facilitates high-density planting

生物 突变体 转录因子 转录组 调节器 播种 混合的 基因 转录调控 拟南芥 细胞生物学 植物 遗传学 基因表达
作者
Huangjun Sheng,Han Zhang,Hua Deng,Zuxin Zhang,Fazhan Qiu,Fang� Yang
出处
期刊:The Plant Cell [Oxford University Press]
标识
DOI:10.1093/plcell/koaf029
摘要

Abstract Compact plant architecture allows more efficient light capture under higher planting density. Thus, it is a crucial strategy for improving crop yield, particularly in maize (Zea mays L.) Here, we isolated a maize gene, COMPACT PLANT 3 (CT3), regulating plant architecture, using map-based cloning. CT3, encoding a GRAS protein, interacts with an AP2 transcription factor (TF), DWARF AND IRREGULAR LEAF 1 (DIL1). The genetic analysis showed that CT3 and DIL1 regulate leaf angle and plant height via the same pathway, supporting the biological role of their interaction by forming a complex. Transcriptome and DNA profiling analyses revealed that these two TFs share many common target genes. We further observed that CT3 functions as a co-regulator to enhance the DNA affinity and transcriptional activity of DIL1. This finding was further supported by the direct binding of DIL1 to two cell wall-related genes, ZmEXO1 and ZmXTH14, which were downregulated in the ct3 mutant. Furthermore, ZmEXO1 regulated plant architecture in a manner similar to CT3- and DIL1-mediated regulation. Zmexo1, ct3, and dil1 mutants showed defective cell wall integrity and had reduced cell wall-related components. The introduction of the ct3 or dil1 mutant allele into elite maize hybrids led to a more compact architecture and increased yield under high planting density. Our findings reveal a regulatory pathway of maize plant architecture and provided targets to increase yield under high planting density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甄的艾你发布了新的文献求助10
1秒前
可鹿丽完成签到 ,获得积分10
1秒前
1秒前
沉静河马完成签到,获得积分10
2秒前
2秒前
JYX关注了科研通微信公众号
2秒前
2秒前
4秒前
PanCiro发布了新的文献求助10
5秒前
英勇的寒蕾完成签到,获得积分10
5秒前
5秒前
平常心完成签到,获得积分10
5秒前
6秒前
英姑应助Arlo采纳,获得10
6秒前
lmt发布了新的文献求助10
7秒前
ding应助贺贺采纳,获得10
7秒前
Thorne完成签到,获得积分20
9秒前
HEIKU应助vision0000采纳,获得10
9秒前
9秒前
传奇3应助认真学习的橘子采纳,获得10
10秒前
yby发布了新的文献求助10
10秒前
dilli完成签到 ,获得积分0
11秒前
雪山飞虹发布了新的文献求助10
11秒前
12秒前
juzihai发布了新的文献求助10
12秒前
12秒前
13秒前
chowjb发布了新的文献求助10
14秒前
爱你的心完成签到 ,获得积分10
14秒前
莫问今生完成签到,获得积分10
16秒前
Owen应助lmt采纳,获得10
16秒前
17秒前
18秒前
学习iuy完成签到,获得积分10
18秒前
完美世界应助210013803采纳,获得10
18秒前
重要尔曼发布了新的文献求助30
19秒前
小杜小杜完成签到,获得积分20
19秒前
20秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814939
求助须知:如何正确求助?哪些是违规求助? 3358987
关于积分的说明 10399369
捐赠科研通 3076561
什么是DOI,文献DOI怎么找? 1689868
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608