已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The research progress on effective connectivity in adolescent depression based on resting-state fMRI

静息状态功能磁共振成像 默认模式网络 功能磁共振成像 功能连接 心理学 显著性(神经科学) 神经科学 大脑活动与冥想 认知 心情 认知心理学 精神科 脑电图
作者
Xuan Deng,Jizheng Cui,Jun Zhao,Jinji Bai,Junfeng Li,Kefeng Li
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fneur.2025.1498049
摘要

Introduction The brain’s spontaneous neural activity can be recorded during rest using resting state functional magnetic resonance imaging (rs-fMRI), and intricate brain functional networks and interaction patterns can be discovered through correlation analysis. As a crucial component of rs-fMRI analysis, effective connectivity analysis (EC) may provide a detailed description of the causal relationship and information flow between different brain areas. It has been very helpful in identifying anomalies in the brain activity of depressed teenagers. Methods This study explored connectivity abnormalities in brain networks and their impact on clinical symptoms in patients with depression through resting state functional magnetic resonance imaging (rs-fMRI) and effective connectivity (EC) analysis. We first introduce some common EC analysis methods, discuss their application background and specific characteristics. Results EC analysis reveals information flow problems between different brain regions, such as the default mode network, the central executive network, and the salience network, which are closely related to symptoms of depression, such as low mood and cognitive impairment. This review discusses the limitations of existing studies while summarizing the current applications of EC analysis methods. Most of the early studies focused on the static connection mode, ignoring the causal relationship between brain regions. However, effective connection can reflect the upper and lower relationship of brain region interaction, and provide help for us to explore the mechanism of neurological diseases. Existing studies focus on the analysis of a single brain network, but rarely explore the interaction between multiple key networks. Discussion To do so, we can address these issues by integrating multiple technologies. The discussion of these issues is reflected in the text. Through reviewing various methods and applications of EC analysis, this paper aims to explore the abnormal connectivity patterns of brain networks in patients with depression, and further analyze the relationship between these abnormalities and clinical symptoms, so as to provide more accurate theoretical support for early diagnosis and personalized treatment of depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
DI完成签到 ,获得积分10
3秒前
4秒前
8秒前
8秒前
健忘无颜发布了新的文献求助10
8秒前
8秒前
DI关注了科研通微信公众号
8秒前
l0000完成签到,获得积分10
9秒前
故意的鞋垫完成签到 ,获得积分10
12秒前
迅捷海狸完成签到 ,获得积分20
13秒前
动人的向松完成签到 ,获得积分10
13秒前
wangli发布了新的文献求助10
13秒前
zheng发布了新的文献求助10
13秒前
17秒前
Criminology34完成签到,获得积分0
18秒前
健忘无颜完成签到,获得积分10
19秒前
在水一方应助干净的时光采纳,获得10
20秒前
小兔子乖乖完成签到 ,获得积分10
20秒前
宋宋不迷糊完成签到 ,获得积分10
25秒前
26秒前
26秒前
001026Z完成签到,获得积分10
26秒前
nPgA2o应助科研通管家采纳,获得10
26秒前
BowieHuang应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
BowieHuang应助科研通管家采纳,获得10
27秒前
852应助科研通管家采纳,获得10
27秒前
27秒前
28秒前
hbu123完成签到,获得积分10
28秒前
30秒前
31秒前
小蚂蚁完成签到,获得积分10
34秒前
clio完成签到,获得积分10
34秒前
34秒前
35秒前
英俊的铭应助热情的紫菜采纳,获得10
35秒前
瞄准月亮完成签到 ,获得积分10
36秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542978
求助须知:如何正确求助?哪些是违规求助? 4629095
关于积分的说明 14610815
捐赠科研通 4570377
什么是DOI,文献DOI怎么找? 2505716
邀请新用户注册赠送积分活动 1483039
关于科研通互助平台的介绍 1454361