A Comprehensive Review of Machine Learning Application to Flash Calculations in Compositional Reservoir Simulators

计算机科学 闪光灯(摄影) 闪蒸 储层模拟 石油工程 工程类 艺术 视觉艺术 废物管理
作者
Ravan Farmanov,Emad W. Al-Shalabi,Ali Elkamel,Strahinja Markovic,Waleed AlAmeri,Ashwin Venkatraman
标识
DOI:10.2118/222709-ms
摘要

Abstract Reservoir engineering often involves dealing with formations that contain several chemical species and show complex phase behaviors. One of the most critical aspects of this field is calculating phase equilibrium, which is usually achieved through numerical simulations of multi-component, multi-phase flow in porous media. These simulations are known as flash calculations and describe the phase behavior of specific fluid mixtures. Flash calculations are typically performed using reservoir simulators that are based on equations of state (EOS), such as the Peng–Robinson (PR) and the Soave–Redlich–Kwong (SRK). While EOS-based flash calculations are known for their accuracy in describing phase behavior within reservoirs, they can be computationally intensive and time-consuming. Machine learning (ML), a branch of artificial intelligence, offers a promising alternative by predicting desired outputs through learning complex patterns among fluid properties of the reservoir. ML models have the potential to outperform traditional reservoir simulators in predicting phase equilibrium by significantly reducing the computational time required for flash calculations. This paper reviews various machine learning models developed over the years as alternatives to traditional flash calculations. It also explores the application of ML in both stability and phase split tests, discussing their limitations and providing recommendations for further improvements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨之默完成签到,获得积分10
刚刚
keaid完成签到 ,获得积分10
刚刚
平头哥哥完成签到 ,获得积分10
刚刚
单手开坦克完成签到,获得积分10
刚刚
nove999完成签到 ,获得积分10
1秒前
Sylvia_J完成签到 ,获得积分10
1秒前
1秒前
天想月完成签到,获得积分10
1秒前
简单花花完成签到,获得积分10
1秒前
糖糖科研顺利呀完成签到 ,获得积分10
1秒前
铁甲小杨完成签到,获得积分10
1秒前
2秒前
舟遥遥完成签到,获得积分10
3秒前
欣喜石头发布了新的文献求助20
3秒前
大个应助南栀倾寒采纳,获得10
3秒前
zhong完成签到,获得积分10
3秒前
3秒前
纷纷完成签到 ,获得积分10
4秒前
4秒前
封典完成签到,获得积分10
4秒前
海心完成签到,获得积分10
5秒前
西早发布了新的文献求助10
5秒前
研友_VZG7GZ应助Winne采纳,获得10
5秒前
小艾同学完成签到,获得积分10
5秒前
小潘完成签到 ,获得积分10
6秒前
帅气的祥完成签到,获得积分10
6秒前
李演员完成签到,获得积分10
6秒前
流云发布了新的文献求助10
7秒前
ZL完成签到 ,获得积分10
7秒前
zyyyy发布了新的文献求助10
7秒前
speed完成签到 ,获得积分10
8秒前
沉静冬易完成签到,获得积分10
8秒前
wanci应助呆萌的幻香采纳,获得10
9秒前
彪壮的绮烟完成签到,获得积分10
9秒前
yifei完成签到,获得积分10
9秒前
9秒前
10秒前
炙热的晓曼完成签到 ,获得积分10
10秒前
10秒前
zj完成签到,获得积分10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837609
求助须知:如何正确求助?哪些是违规求助? 3379759
关于积分的说明 10510349
捐赠科研通 3099361
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615