Bi-Directional Multi-Scale Graph Dataset Condensation via Information Bottleneck

瓶颈 计算机科学 比例(比率) 图形 理论计算机科学 地理 地图学 嵌入式系统
作者
Xingcheng Fu,Yue Gao,Beining Yang,Yuxuan Wu,Haodong Qian,Qingyun Sun,Xianxian Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.17355
摘要

Dataset condensation has significantly improved model training efficiency, but its application on devices with different computing power brings new requirements for different data sizes. Thus, condensing multiple scale graphs simultaneously is the core of achieving efficient training in different on-device scenarios. Existing efficient works for multi-scale graph dataset condensation mainly perform efficient approximate computation in scale order (large-to-small or small-to-large scales). However, for non-Euclidean structures of sparse graph data, these two commonly used paradigms for multi-scale graph dataset condensation have serious scaling down degradation and scaling up collapse problems of a graph. The main bottleneck of the above paradigms is whether the effective information of the original graph is fully preserved when consenting to the primary sub-scale (the first of multiple scales), which determines the condensation effect and consistency of all scales. In this paper, we proposed a novel GNN-centric Bi-directional Multi-Scale Graph Dataset Condensation (BiMSGC) framework, to explore unifying paradigms by operating on both large-to-small and small-to-large for multi-scale graph condensation. Based on the mutual information theory, we estimate an optimal ``meso-scale'' to obtain the minimum necessary dense graph preserving the maximum utility information of the original graph, and then we achieve stable and consistent ``bi-directional'' condensation learning by optimizing graph eigenbasis matching with information bottleneck on other scales. Encouraging empirical results on several datasets demonstrates the significant superiority of the proposed framework in graph condensation at different scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzc发布了新的文献求助30
刚刚
muyan完成签到,获得积分10
刚刚
善学以致用应助dzh采纳,获得10
1秒前
1秒前
酷波er应助无的采纳,获得10
2秒前
HW完成签到 ,获得积分10
2秒前
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
超级的涵山完成签到,获得积分20
6秒前
隐形曼青应助神勇秋白采纳,获得10
6秒前
VIEAAA完成签到,获得积分10
6秒前
格局关注了科研通微信公众号
7秒前
龙华之士发布了新的文献求助10
7秒前
7秒前
小蘑菇应助积极的邪欢采纳,获得10
7秒前
loop完成签到,获得积分10
8秒前
8秒前
喜悦山柳完成签到,获得积分20
9秒前
WYQ发布了新的文献求助10
9秒前
9秒前
晴朗发布了新的文献求助10
9秒前
10秒前
yy完成签到,获得积分20
10秒前
10秒前
琉璃发布了新的文献求助10
10秒前
飘逸谷蕊完成签到,获得积分10
10秒前
元海云发布了新的文献求助10
11秒前
11秒前
11秒前
sakkaku发布了新的文献求助30
14秒前
够苟发布了新的文献求助10
14秒前
无花果应助迷路芷波采纳,获得10
14秒前
15秒前
科研混子发布了新的文献求助10
15秒前
Lengbo发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5169002
求助须知:如何正确求助?哪些是违规求助? 4360389
关于积分的说明 13576138
捐赠科研通 4207207
什么是DOI,文献DOI怎么找? 2307389
邀请新用户注册赠送积分活动 1306942
关于科研通互助平台的介绍 1253600