光催化
纳米棒
材料科学
半导体
纳米颗粒
X射线光电子能谱
催化作用
金属
纳米技术
化学工程
光电子学
化学
工程类
冶金
生物化学
作者
Shira Gigi,Tal Cohen,Daniel Zanetti de Florio,Adar Levi,David Stone,Ofer Katoa,Junying Li,Jing Liu,Sergei Remennik,Franco V. A. Camargo,Giulio Cerullo,Anatoly I. Frenkel,Uri Banin
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-01-06
被引量:1
标识
DOI:10.1021/acsnano.4c13603
摘要
Semiconductor–metal hybrid nanoparticles (HNPs) are promising materials for photocatalytic applications, such as water splitting for green hydrogen generation. While most studies have focused on Cd containing HNPs, the realization of actual applications will require environmentally compatible systems. Using heavy-metal free ZnSe-Au HNPs as a model, we investigate the dependence of their functionality and efficiency on the cocatalyst metal domain characteristics ranging from the single-atom catalyst (SAC) regime to metal-tipped systems. The SAC regime was achieved via the deposition of individual atomic cocatalysts on the semiconductor nanocrystals in solution. Utilizing a combination of electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy, we established the presence of single Au atoms on the ZnSe nanorod surface. Upon increased Au concentration, this transitions to metal tip growth. Photocatalytic hydrogen generation measurements reveal a strong dependence on the cocatalyst loading with a sharp response maximum in the SAC regime. Ultrafast dynamics studies show similar electron decay kinetics for the pristine ZnSe nanorods and the ZnSe-Au HNPs in either SAC or tipped systems. This indicates that electron transfer is not the rate-limiting step for the photocatalytic process. Combined with the structural-chemical characterization, we conclude that the enhanced photocatalytic activity is due to the higher reactivity of the single-atom sites. This holistic view establishes the significance of SAC-HNPs, setting the stage for designing efficient and sustainable heavy-metal-free photocatalyst nanoparticles for numerous applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI