亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A SEM–ANN analysis to examine impact of artificial intelligence technologies on sustainable performance of SMEs

计算机科学 人工智能 业务
作者
Raheem Bux Soomro,Waleed Mugahed Al-Rahmi,Nisar Ahmed Dahri,Latifah Almuqren,Abeer S. Almogren,Ayad Aldaijy
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:4
标识
DOI:10.1038/s41598-025-86464-3
摘要

This study investigates the impact of Artificial Intelligence (AI) adoption on the sustainable performance of small and medium-sized enterprises (SMEs). Employing a hybrid quantitative approach, this research combines Partial Least Squares Structural Equation Modeling (PLS-SEM) and Artificial Neural Networks (ANN) to examine the influence of various organizational, technological, and external factors on AI adoption. Key factors considered include top management support, employee capability, customer pressure, complexity, vendor support, and relative advantage. Data collected from 305 SMEs across multiple sectors were analyzed. The results reveal that all the proposed factors significantly and positively affect AI adoption, with top management support, employee capability, and relative advantage being the most influential predictors. Additionally, the adoption of AI technologies substantially enhances the economic, social, and environmental performance of SMEs, reflecting improvements in operational efficiency, cost reduction, and social value creation. The ANN results confirm the robustness of the SEM findings, highlighting the critical role of AI in driving sustainability outcomes. Furthermore, the study emphasizes the positive mediation effects of AI adoption on organizational performance, indicating that AI adoption serves as a key enabler in achieving both short-term operational gains and long-term sustainability objectives. This research contributes to the understanding of AI's transformative role in enhancing the sustainable performance of SMEs in developing economies, offering strategic insights for both policymakers and business leaders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
胡胡胡发布了新的文献求助10
5秒前
zmd完成签到 ,获得积分10
7秒前
研友_Zzrx6Z发布了新的文献求助20
19秒前
小小鱼发布了新的文献求助10
25秒前
王二完成签到,获得积分10
27秒前
小小鱼完成签到,获得积分10
32秒前
皮老师发布了新的文献求助20
36秒前
41秒前
丸橙完成签到,获得积分10
43秒前
库里强发布了新的文献求助10
44秒前
丸橙发布了新的文献求助10
46秒前
47秒前
FashionBoy应助朴素的曼易采纳,获得10
50秒前
rerorero18完成签到,获得积分10
52秒前
52秒前
在水一方应助rerorero18采纳,获得10
54秒前
56秒前
57秒前
坦率邪欢发布了新的文献求助10
59秒前
叽里呱啦完成签到 ,获得积分10
1分钟前
SciGPT应助003采纳,获得20
1分钟前
李某完成签到 ,获得积分10
1分钟前
SYLH应助ZhangYuan采纳,获得10
1分钟前
深情安青应助ZhangYuan采纳,获得10
1分钟前
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
科目三应助坦率邪欢采纳,获得10
1分钟前
思源应助俭朴的滑板采纳,获得10
1分钟前
小二郎应助啦啦啦采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
俭朴的滑板完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
丘比特应助丸橙采纳,获得10
1分钟前
搜集达人应助丸橙采纳,获得10
1分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830364
求助须知:如何正确求助?哪些是违规求助? 3372779
关于积分的说明 10475199
捐赠科研通 3092539
什么是DOI,文献DOI怎么找? 1702118
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087