Semantic segmentation for weed detection in corn

杂草 分割 像素 计算机科学 人工智能 图像分割 杂草防治 模式识别(心理学) 机器学习 农学 生物
作者
Teng Liu,Xiaojun Jin,Kang Han,Feiyu He,Jinxu Wang,Xin Chen,Xiaotong Kong,Jialin Yu
出处
期刊:Pest Management Science [Wiley]
标识
DOI:10.1002/ps.8554
摘要

Abstract BACKGROUND Reliable, fast, and accurate weed detection in farmland is crucial for precision weed management but remains challenging due to the diverse weed species present across different fields. While deep learning models for direct weed detection have been developed in previous studies, creating a training dataset that encompasses all possible weed species, ecotypes, and growth stages is practically unfeasible. This study proposes a novel approach to detect weeds by integrating semantic segmentation with image processing. The primary aim is to simplify the weed detection process by segmenting crop pixels and identifying all vegetation outside the crop mask as weeds. RESULTS The proposed method employs a semantic segmentation model to generate a mask of corn ( Zea mays L.) crops, identifying all green plant pixels outside the mask as weeds. This indirect segmentation approach reduces model complexity by avoiding the need for direct detection of diverse weed species. To enhance real‐time performance, the semantic segmentation model was optimized through knowledge distillation, resulting in a faster, lighter‐weight inference. Experimental results demonstrated that the DeepLabV3+ model, after applying knowledge distillation, achieved an average accuracy (aAcc) exceeding 99.5% and a mean intersection over union (mIoU) across all categories above 95.5%. Furthermore, the model's operating speed surpassed 34 frames per second (FPS). CONCLUSION This study introduces a novel method that accurately segments crop pixels to form a mask, identifying vegetation outside this mask as weeds. By focusing on crop segmentation, the method avoids the complexity associated with diverse weed species, varying densities, and different growth stages. This approach offers a practical and efficient solution to facilitate the training of effective computer vision models for precision weed detection and control. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张晓念完成签到,获得积分10
2秒前
4秒前
xiayu完成签到 ,获得积分0
6秒前
黎明完成签到,获得积分10
6秒前
xiaoguai完成签到 ,获得积分10
10秒前
阿曼尼完成签到 ,获得积分10
12秒前
大维C完成签到,获得积分10
13秒前
忐忑的天真完成签到 ,获得积分10
13秒前
孤鸿影98完成签到 ,获得积分10
14秒前
霍师傅发布了新的文献求助10
16秒前
黄少侠完成签到 ,获得积分0
17秒前
yuchen完成签到,获得积分10
18秒前
19秒前
20秒前
wubobo完成签到,获得积分10
21秒前
碳火涮羊肉完成签到,获得积分10
24秒前
cccr02发布了新的文献求助10
24秒前
25秒前
25秒前
沙里飞完成签到 ,获得积分10
27秒前
乙醇发布了新的文献求助10
28秒前
29秒前
风流难误我完成签到,获得积分10
30秒前
31秒前
Lemenchichi完成签到,获得积分10
32秒前
lifeng发布了新的文献求助10
32秒前
仓颉发布了新的文献求助10
32秒前
33秒前
33秒前
34秒前
老实皮卡丘完成签到 ,获得积分10
35秒前
36秒前
37秒前
高高的茹妖完成签到,获得积分20
37秒前
沉静的小熊猫完成签到,获得积分10
37秒前
dddd发布了新的文献求助30
38秒前
郝君颖完成签到,获得积分10
38秒前
十二发布了新的文献求助10
38秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779439
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220672
捐赠科研通 3040111
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522