Physically Interpretable Wavelet-Guided Networks With Dynamic Frequency Decomposition for Machine Intelligence Fault Prediction

可解释性 断层(地质) 计算机科学 人工智能 小波 频域 卷积(计算机科学) 特征(语言学) 离散小波变换 深度学习 模式识别(心理学) 小波包分解 机器学习 人工神经网络 小波变换 计算机视觉 地质学 地震学 哲学 语言学
作者
Huan Wang,Yan‐Fu Li,Tianli Men,Lishuai Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (8): 4863-4875 被引量:8
标识
DOI:10.1109/tsmc.2024.3389068
摘要

Machine intelligence fault prediction (MIFP) is crucial for ensuring complex systems' safe and reliable operation. While deep learning has become the mainstream tool for MIFP due to its excellent learning abilities, its interpretability is limited, and it struggles to learn frequencies, making it challenging to understand the physical knowledge of signals at the frequency level. Therefore, this article proposes a physically interpretable wavelet-guided network (WaveGNet) with deep frequency separation for MIFP, inspired by the sound theoretical basis and physical meaning of discrete wavelet transform (DWT). WaveGNet expands the feature learning space of CNN into the frequency domain, allowing for a better understanding of the physical insights behind the frequency level. Specifically, WaveGNet involves a derivable and learnable frequency learning layer (FL-Layer) consisting of a wavelet-driven frequency decomposition module and a convolution-driven feature learning module. Multiple DWT-driven FL-Layers are used in WaveGNet to achieve deep frequency decomposition and multiresolution frequency feature learning in a coarse-to-fine manner. The effectiveness of WaveGNet was evaluated in real high-speed train wheel wear monitoring and high-speed aviation bearing fault diagnosis cases. Experimental results showed that WaveGNet outperforms cutting-edge deep learning algorithms and has excellent fault diagnosis and prediction abilities. Furthermore, an in-depth analysis of the learning mechanism of wavelet-driven CNN from the frequency domain perspective was conducted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
oyk发布了新的文献求助10
2秒前
3秒前
在水一方应助惠葶采纳,获得10
3秒前
稳重的怀寒完成签到,获得积分10
3秒前
清欢发布了新的文献求助10
4秒前
5秒前
8秒前
四月是你的谎言完成签到 ,获得积分10
8秒前
闪闪的斑马完成签到,获得积分10
8秒前
wwmmyy完成签到 ,获得积分10
9秒前
10秒前
漂亮素发布了新的文献求助10
10秒前
搜集达人应助可爱的妙海采纳,获得30
11秒前
搜集达人应助梅梅采纳,获得10
14秒前
慕青应助liulium采纳,获得10
14秒前
RWHO发布了新的文献求助10
14秒前
ljh024完成签到,获得积分10
14秒前
Zeroing完成签到,获得积分10
15秒前
清欢完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
罗大大完成签到 ,获得积分10
16秒前
tls完成签到,获得积分10
16秒前
英姑应助害羞的思松采纳,获得10
18秒前
宇帅完成签到,获得积分10
18秒前
wanci应助可耐的碧采纳,获得10
18秒前
无奈的小兔子完成签到,获得积分10
20秒前
20秒前
aa完成签到,获得积分20
21秒前
22秒前
22秒前
Mic应助YY采纳,获得30
23秒前
科研通AI6应助漂亮素采纳,获得10
24秒前
25秒前
yy发布了新的文献求助10
25秒前
打打应助Pepsi采纳,获得10
26秒前
小马甲应助zz采纳,获得10
26秒前
26秒前
27秒前
研友_8K2x2Z完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541464
求助须知:如何正确求助?哪些是违规求助? 4627921
关于积分的说明 14605667
捐赠科研通 4568962
什么是DOI,文献DOI怎么找? 2504866
邀请新用户注册赠送积分活动 1482342
关于科研通互助平台的介绍 1453883