Machine Learning Algorithms Versus Classical Regression Models in Pre-Eclampsia Prediction: A Systematic Review

随机森林 医学 机器学习 子痫 置信区间 回归 算法 人工智能 梯度升压 回归分析 统计 计算机科学 怀孕 内科学 数学 生物 遗传学
作者
Sofonyas Abebaw Tiruneh,Tra Thuan Thanh Vu,Daniel L. Rolnik,Helena Teede,Joanne Enticott
出处
期刊:Current Hypertension Reports [Springer Nature]
卷期号:26 (7): 309-323 被引量:18
标识
DOI:10.1007/s11906-024-01297-1
摘要

Abstract Purpose of Review Machine learning (ML) approaches are an emerging alternative for healthcare risk prediction. We aimed to synthesise the literature on ML and classical regression studies exploring potential prognostic factors and to compare prediction performance for pre-eclampsia. Recent Findings From 9382 studies retrieved, 82 were included. Sixty-six publications exclusively reported eighty-four classical regression models to predict variable timing of onset of pre-eclampsia. Another six publications reported purely ML algorithms, whilst another 10 publications reported ML algorithms and classical regression models in the same sample with 8 of 10 findings that ML algorithms outperformed classical regression models. The most frequent prognostic factors were age, pre-pregnancy body mass index, chronic medical conditions, parity, prior history of pre-eclampsia, mean arterial pressure, uterine artery pulsatility index, placental growth factor, and pregnancy-associated plasma protein A. Top performing ML algorithms were random forest (area under the curve (AUC) = 0.94, 95% confidence interval (CI) 0.91–0.96) and extreme gradient boosting (AUC = 0.92, 95% CI 0.90–0.94). The competing risk model had similar performance (AUC = 0.92, 95% CI 0.91–0.92) compared with a neural network. Calibration performance was not reported in the majority of publications. Summary ML algorithms had better performance compared to classical regression models in pre-eclampsia prediction. Random forest and boosting-type algorithms had the best prediction performance. Further research should focus on comparing ML algorithms to classical regression models using the same samples and evaluation metrics to gain insight into their performance. External validation of ML algorithms is warranted to gain insights into their generalisability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yaoqing发布了新的文献求助10
1秒前
chenchen发布了新的文献求助10
2秒前
justinli发布了新的文献求助10
3秒前
有机哈基米完成签到,获得积分10
4秒前
4秒前
淡淡晓夏发布了新的文献求助10
4秒前
慕青应助丰富的不惜采纳,获得10
4秒前
卢小军完成签到,获得积分10
4秒前
欧贤书完成签到,获得积分20
4秒前
DEUX完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
田様应助wsn采纳,获得10
6秒前
mmyhn发布了新的文献求助10
6秒前
7秒前
科研通AI6应助栀初采纳,获得10
7秒前
机智的代真完成签到,获得积分20
7秒前
8秒前
zhonglv7应助阿7采纳,获得10
9秒前
Alicewang完成签到,获得积分20
10秒前
长孙曼香发布了新的文献求助20
10秒前
满天星辰发布了新的文献求助10
10秒前
1235456发布了新的文献求助10
10秒前
Lucas应助孤独的无血采纳,获得30
12秒前
水果完成签到 ,获得积分10
12秒前
bkagyin应助哈哈采纳,获得10
12秒前
尾巴发布了新的文献求助10
12秒前
王闯完成签到,获得积分20
12秒前
Zenghaw发布了新的文献求助10
14秒前
15秒前
乐乐应助xr采纳,获得10
15秒前
花火发布了新的文献求助10
15秒前
15秒前
Orange应助yyryyrr采纳,获得10
16秒前
舒适飞薇完成签到,获得积分10
16秒前
16秒前
lee完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879