克里唑蒂尼
转录组
化学
信号转导
药理学
生物
细胞生物学
生物化学
医学
基因表达
基因
内科学
恶性胸腔积液
胸腔积液
作者
Min Li,Z Y Yue,Menglin Wang,Yán Wāng,Peng Xiao,Yuan Wei,Ji-Duo Shen,Yucheng Li
标识
DOI:10.1080/15376516.2025.2536058
摘要
Crizotinib, a first-generation tyrosine kinase inhibitor, demonstrates excellent clinical efficacy in treating non-small cell lung cancer (NSCLC). However, its clinical application is often limited by severe hepatotoxicity, the underlying mechanisms of which remain poorly understood. This study aimed to investigate the molecular mechanisms of crizotinib-induced hepatotoxicity in mice using transcriptomic analysis. Male ICR mice were orally administered crizotinib at doses of 100, 200, and 300 mg/kg for 7 consecutive days. Hepatotoxicity was assessed by measuring serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, along with histopathological evaluation via hematoxylin and eosin (H&E) staining. Transcriptomic and bioinformatics analyses of liver tissues were conducted to identify potential toxicological pathways. Oxidative stress markers were quantified using biochemical assay kits. Hepatic macrophage activation was examined by F4/80 immunostaining, and protein expression levels were analyzed by western blotting. Crizotinib administration resulted in dose-dependent liver injury, as indicated by elevated serum ALT and AST levels, body weight loss, and histological abnormalities. Transcriptomic profiling revealed significant enrichment of oxidative stress-related pathways, with protein-protein interaction (PPI) analysis identifying Jun as a key hub gene. Crizotinib significantly increased hepatic reactive oxygen species (ROS), malondialdehyde (MDA), and oxidized glutathione (GSSG) levels, while reducing reduced glutathione (GSH) levels and the GSH/GSSG ratio. Additionally, crizotinib significantly upregulated Bax and downregulated Bcl-2 expression, promoted macrophage infiltration, and increased the expression of JNK and NLRP3 proteins. These findings suggest that crizotinib-induced hepatotoxicity may be mediated by ROS-induced activation of the JNK/NLRP3 signaling pathway, which subsequently promotes hepatic inflammation and apoptosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI